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Abstract—This paper presents a theoretical framework for
the design and analysis of gradient descent-based algorithms
for coverage control tasks involving robot swarms. We adopt a
multiscale approach to analysis and design to ensure consistency
of the algorithms in the large-scale limit. First, we represent the
macroscopic configuration of the swarm as a probability measure
and formulate the macroscopic coverage task as the minimization
of a convex objective function over probability measures. We
then construct a macroscopic dynamics for swarm coverage,
which takes the form of a proximal descent scheme in the L2-
Wasserstein space. Our analysis exploits the generalized geodesic
convexity of the coverage objective function, proving convergence
in the L2-Wasserstein sense to the target probability measure.
We then obtain a consistent gradient descent algorithm in the
Euclidean space that is implementable by a finite collection of
agents, via a “variational” discretization of the macroscopic cov-
erage objective function. We establish the convergence properties
of the gradient descent and its behavior in the continuous-time
and large-scale limits. Furthermore, we establish a connection
with well-known Lloyd-based algorithms, seen as a particular
class of algorithms within our framework, and demonstrate our
results via numerical experiments.

Index Terms—Multi-agent systems, coverage control, multi-
scale analysis, proximal descent, Lloyd’s algorithm.

I. INTRODUCTION

Multi-agent systems are groups of autonomous agents with
sensing, communication, and computational capabilities. It is
often necessary to achieve a desired coverage of a spatial
region before these systems can be deployed for specific pur-
poses. This has spurred intense research activity on the design
of multi-agent coverage control algorithms [1]–[4]. In spatial
coverage control problems involving large-scale multi-agent
systems, it is often more appropriate and convenient to specify
the task objective at the macroscopic scale for the distribution
of agents over the spatial region. However, actuation still rests
at the microscopic scale at the level of the individual agents,
and faces a multitude of constraints imposed by the multi-
agent setting. These include information constraints from
limitations on sensing, communication and localization, and
physical constraints such as collision and obstacle avoidance.
This separation of scales poses a problem for the analysis
and design of algorithms with performance guarantees. While
mechanistic models relying on theoretical tools from infinite-
dimensional analysis are often more appropriate for macro
scales, an algorithmic approach that relies on tools from
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finite dimensional analysis is more effective in addressing the
above microscopic constraints. This underscores the need for
a formal theory bridging the two scales. Such a bridge theory
is crucial for integrating the mechanistic and algorithmic
paradigms and in understanding how macroscopic coverage
objectives translate to the microscopic level of individual
agents and conversely, how the microscopic algorithms shape
macroscopic behavior.

Related work. Multi-agent coverage control algorithms
have been widely studied over the past two decades and have a
rich literature. For an (inexhaustive) overview of the literature,
we adopt the classification into mechanistic vs algorithmic
models, as introduced earlier. The algorithmic perspective is
predominantly based on tools from distributed optimization.
Initial works combined distributed optimization with ideas
from computational geometry and dynamic systems [1], [5]–
[7]. These were then extended to include sensing, energy,
and, obstacle, and dynamic constraints encountered in the
multi-agent setting [3], [8], [9]. Interest in the mechanistic
perspective was fueled by efforts to scale up the size of these
systems, which emphasized the need for tools of macroscopic
analysis. This led to the application of mathematical tools from
probability, stochastic processes and partial differential equa-
tions. For large-scale multi-agent systems, one such approach
involves the design of coverage by synthesis of Markov transi-
tion matrices [10]–[13]. Another approach involves the use of
continuum/PDE-based models, applying ideas of diffusion and
heat flow to coverage control [14]–[16]. Tools from parameter
tuning and boundary control of PDEs [17]–[19] have been used
in this context. Statistical physics-based approaches, including
the application of mean-field theory, have also been recently
explored [20], [21]. Some works at the intersection of the
microscopic and macroscopic perspectives include [19], where
the authors obtain performance bounds for spatial coverage by
multi-agent swarms, characterizing coverage performance as a
function of the number of robots and robot sensing radius.

More recently, tools from optimal transport theory have
been applied to multi-agent coverage. Interest in optimal
transport and optimal control is motivated by energy consid-
erations, and constitutes another active area of research [22]–
[26]. Furthermore, coverage algorithms often work with a
quantization of the underlying spatial domain. Recently [27]–
[30] explores the underlying connections of quantization to
optimal transport. Some well-known transport PDEs can be
formulated as gradient flows on functionals in the space of
probability measures [31]. Furthermore, from a computational
perspective, gradient flows in the space of probability measures
are often discretized into particle gradient flows. The gradient
flow structure underlying these PDEs allows for their dis-
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cretization by formulating proximal gradient descent schemes
in the space of probability measures. For instance, in [32]
the authors discretize the well-known Fokker-Planck equation
by a proximal recursion. In [33], the authors investigate the
convergence of such particle gradient flows to global minima
in the limit N → ∞. In [34], the authors apply proximal
descent schemes to study uncertainty propagation in stochastic
systems.

Contributions. This paper contributes a multi-scale analysis
of gradient descent-based coverage algorithms for multi-agent
systems, with three main goals in mind: (i) the formalization
of coverage objectives for large-scale multi-agent systems via
meaningful macroscopic metrics, (ii) the systematic design
of provable correct algorithms that are consistent across the
macroscopic and microscopic scales, and (iii) to gain a funda-
mental understanding of widely studied coverage algorithms
for large-scale multi-agent systems and shed new light on
their behavior as the number of agents N → ∞. A suitable
theoretical framework for the above is largely missing in the
literature and this work addresses the gap.

We formulate the coverage task as a minimization in the
space of probability measures and define a proximal gradi-
ent descent on the aggregate objective function. The multi-
agent configuration is specified by discretizing the underlying
probability measure and we obtain implementable coverage
algorithms as a proximal gradient descent on the discretized
aggregate objective function w.r.t. agent positions. This leads
to a new class of “variational” gradient algorithms, and we
show that this class of algorithms subsumes previously defined
coverage algorithms based on distortion metrics. This allows
us to establish a connection between the macroscopic and
microscopic perspectives and present a unified theory of multi-
agent coverage algorithms.

Paper outline. The rest of the paper is organized as
follows. Section II contains a description of the coverage
optimization problem setting. In Section III, we present an
iterative descent scheme in the space of probability measures
and establish convergence results for such a scheme. Building
on these results, we propose multi-agent coverage algorithms
in Section IV as the discretization of the iterative descent
scheme from Section III, establish convergence results and
study their behavior in the continuous-time and N → ∞
limits. Section V contains a case study of the well-known
Lloyd’s algorithm within the theoretical framework developed
in the prior sections and results from numerical experiments.
An overview of the mathematical preliminaries is presented in
Appendix A.

II. COVERAGE OPTIMIZATION PROBLEM

In this section, we formulate the multi-agent coverage prob-
lem as an optimization of a macroscopic coverage objective,
which forms the focus of our analysis and algorithm design in
the subsequent sections. We begin by specifying the problem
setting. Let Ω ⊂ Rd be compact and convex (see additional

notation here1), and x = (x1, . . . , xN ) (with xi ∈ Ω for
i ∈ I = {1, . . . , N} being the agent positions) denote the
microscopic state of the multi-agent system. In specifying
the macroscopic configuration, we look for a representation
that satisfies two key properties, (i) Permutation-invariance:
Assuming that the agents are identical, we note that every
microscopic configuration x ∈ ΩN is equivalent to (P ⊗ Id)x
for any permutation P ∈ RN×N . The representation must be
invariant under such permutations, and (ii) Consistency in the
N → ∞ limit: The space of representations must contain
the “representation limit” as N → ∞, to enable the study
of large-scale properties of coverage algorithms. This leads
us to specifying the macroscopic configuration of the multi-
agent system by probability measures over the underlying
space Ω. For the microscopic configuration x = (x1, . . . , xN ),
we specify the corresponding macroscopic configuration by
the probability measure µ̂Nx = 1

N

∑N
i=1 δxi . We note that µ̂Nx

is invariant under permutations of agent positions. Further-
more, if the positions xi are independently and identically
distributed according to an (absolutely continuous) probability
measure µ ∈ P(Ω), it follows from the Glivenko-Cantelli
theorem [35] that as N →∞, the discrete probability measure
µ̂Nx converges uniformly, and almost surely, to µ. In this way,
probability measures over Ω are a suitable space of macro-
scopic representations that combine the desired properties of
permutation-invariance and consistency in the N →∞ limit.

With the microscopic and macroscopic representations of
the multi-agent system in place, we now move to the specifica-
tion of the coverage task as the minimization of a macroscopic
coverage objective function F : P(Ω) → R. We let F be l-
smooth and strictly (generalized) geodesically convex2, with
a unique minimizer µ∗ ∈ P(Ω). The coverage problem can
then be described as follows: Given an initial macroscopic
configuration µ0 ∈ P(Ω) of the multi-agent system (with µ0

being an absolutely continuous probability measure), specify a
descent scheme in P(Ω) that minimizes the coverage objective
function F , generating a sequence {µk}k∈N that converges
weakly to µ∗ as k →∞. In Section III, we propose a proximal
descent scheme that exploits the (generalized) convexity of F
to solve the coverage task. Furthermore, in Section IV we
obtain an implementable multi-agent coverage algorithm that

1 We let ‖ · ‖ : Rd → R≥0 denote the Euclidean norm on Rd and | · | :
R→ R≥0 the absolute value function. The gradient operator in Rd is denoted
as ∇ = (∂/∂x1, . . . ∂/∂xn), where, as a shorthand, we use ∂/∂z ≡ ∂z to
denote the partial derivative w.r.t. a variable z and ∂

∂xi
≡ ∂i. Consider a set

Ω ⊆ Rd. In what follows, ∂Ω ⊆ Rd denotes its boundary, Ω̄ = Ω ∪ ∂Ω its
closure, and Ω̊ = Ω \ ∂Ω its interior with respect to the standard Euclidean
topology. For M ⊆ Ω, we define the distance d(x,M) of a point x ∈ Ω
to M as d(x,M) = infy∈M ‖x − y‖. Given any x ∈ Ω ⊂ Rd, we denote
by Br(x) the closed d-ball of radius r > 0, centered at x. The indicator
function on Ω for the subset M will be denoted as 1M : Ω → {0, 1}.
We use 〈f, g〉 to represent the inner product of functions f, g : Ω → R
w.r.t. the Lebesgue measure, given by 〈f, g〉 =

∫
Ω fg dvol. We denote by

Lip(Ω) the space of Lipschitz continuous functions on Ω. A function p :
Ω → R is called l-smooth (or Lipschitz differentiable) if for any x, y ∈ Ω,
we have |∇p(y)−∇p(x)| ≤ l‖y−x‖. It can be shown that for an l-smooth
function p : Ω→ R and any x, y ∈ Ω, we have |p(y)−p(x)−〈∇p(x), y−
x〉| ≤ l

2
‖y−x‖2. We denote by P(Ω) the space of probability measures over

Ω. For a measurable mapping T : Ω→ Θ, where Ω and Θ are measurable,
we denote by T#µ ∈ P(Θ) the pushforward measure of µ ∈ P(Ω) and we
have T#µ(B) = µ(T −1(B)). for all measurable B ⊆ Θ.

2in the sense of Definition 7 in Appendix A.
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updates agent positions in Ω and performs consistently (in the
N →∞ limit) with the macroscopic descent scheme. That is,
we design a provably-correct, discrete-time, agent-based algo-
rithm that generates microscopic sequences {xk}k∈N ⊆ ΩN

such that limk,N→∞ µ̂Nxk = µ?. We address this question in
Section IV by tying the macroscopic descent scheme with
the microscopic coverage algorithm by means of a variational
approach.

Example coverage objective functions. We introduce a class
of coverage objective functions, whose convexity properties
will be analyzed in Section V. Furthermore, in Section V we
also establish a relationship between the macroscopic descent
scheme corresponding to these objective functions and the
well-known Lloyd’s algorithm [1]. Let f : R→ R be a strictly
convex, non-decreasing and l-smooth function with f(0) = 0,
and let:

Cf (µ, ν) = inf
T :Ω→Ω
T#µ=ν

∫
Ω

f(|x− T (x)|) dµ(x), (1)

be defined for two probability measures µ and ν. In the
quadratic case f(x) = x2, we get Cf ≡W 2

2 , the so-called L2-
Wasserstein distance, which is a metric over P(Ω). Conversely,
this suggests the design of a coverage objective function given
a target macroscopic configuration µ?, as F (µ) = W 2

2 (µ, µ?),
which quantifies how far µ is from the target µ?.

III. MACROSCOPIC AND PARTICLE DESCENT SCHEMES

In this section, we present a (macroscopic) iterative descent
scheme in the space of probability measures P(Ω) and es-
tablish weak convergence to the minimizer under certain con-
ditions. Furthermore, we derive an equivalent (microscopic)
characterization of the descent scheme in Ω. We refer to
Appendix A for additional definitions and supporting results.

We consider the following proximal recursion in P(Ω)
starting from any absolutely continuous µ0 ∈ P(Ω):

µk+1 ∈ arg min
ν∈P(Ω)

1

2τ
W 2

2 (µk, ν) + F (ν). (2)

We assume that F satisfies the Neumann boundary condition
∇
(
δF
δν

)
· n ≥ 0 on ∂Ω (where n is the outward normal to

∂Ω) for any ν ∈ P(Ω). This ensures conservation of mass
and that the solutions of the gradient descent w.r.t. F , which
are sequences of measures, are contained in P(Ω).

Lemma 1 (Compactness and convexity of sublevel sets). Let
F be an l-smooth, geodesically convex functional (in the sense
of Definition 7 in Appendix A) over Ω. The F -sublevel set of
any absolutely continuous probability measure µ ∈ P(Ω) is
compact and geodesically convex in the L2-Wasserstein space
(P(Ω),W2).

Proof. For any µ ∈ P(Ω), the sublevel set S(µ) = {ν ∈
P(Ω)|F (ν) ≤ F (µ)} is closed in (P(Ω),W2), since F is
continuous and P(Ω) is closed and compact (see Corollary 3
in Appendix A on the compactness of P(Ω)). This implies that
S(µ) is also compact since it is a closed subset of a compact
set.

Recall from Lemma 16 that (P(Ω),W2) is geodesically
convex, and consider, for any ν0, ν1 ∈ S(µ), and νt ∈ P(Ω),

for t ∈ [0, 1], the generalized geodesic between ν0 to ν1 with
µ as the reference measure (from Lemma 13 it follows that
unique optimal transport maps from µ to ν0 and µ to ν1

exist, since µ is absolutely continuous, and therefore so does a
unique generalized geodesic in (P(Ω),W2) between ν0 and ν1

as in Definition 6). From the (generalized) geodesic convexity
of F we have that F (νt) ≤ (1 − t)F (ν0) + tF (ν1) ≤ F (µ)
(since F (ν0) ≤ F (µ) and F (ν1) ≤ F (µ) by definition of
S(µ)). This implies that νt ∈ S(µ) for any t ∈ [0, 1], from
which we infer the geodesic convexity of S(µ).

Lemma 2 (Strong convexity of objective functional). Let F
be an l-smooth, geodesically convex functional over P(Ω).
For any absolutely continuous probability measure µ ∈ P(Ω),
the functional G(ν) = 1

2τW
2
2 (µ, ν) + F (ν) is

(
1
τ − l

)
-

strongly geodesically convex (in the sense of Definition 8 in
Appendix A) over Pr(Ω) for 0 < τ < 1/l.

Proof. Since F is l-smooth, applying Lemma 15 for two
atomless measures ν1 and ν2, we get:∣∣∣∣∫

Ω

〈ξ2 − ξ1, Tµ→ν2 − Tµ→ν1〉 dµ
∣∣∣∣ ≤ lW 2

2 (ν1, ν2), (3)

where ξ1 and ξ2 are the Fréchet derivatives of F evaluated
at ν1 and ν2, respectively, and Tµ→ν1 and Tµ→ν2 are the
optimal transport maps from µ to ν1 and ν2, respectively. Let
ηi = ∇

(
δG
δν

)∣∣
νi

, for i = 1, 2, and let φi = 1
2
δW 2

2 (µ,ν)
δν

∣∣∣
νi

be
the so-called Kantorovich potential for the transport from ν1

to µ, for i = 1, 2. We now have:∫
Ω

〈η2 − η1, Tµ→ν2 − Tµ→ν1〉 dµ

=

∫
Ω

〈
1

τ
∇φ2 −

1

τ
∇φ1 − ξ1 + ξ2, Tµ→ν2 − Tµ→ν1

〉
dµ

=
1

τ

∫
Ω

〈∇φ2 −∇φ1, Tµ→ν2 − Tµ→ν1〉 dµ

+

∫
Ω

〈ξ2 − ξ1, Tµ→ν2 − Tµ→ν1〉 dµ

≥ 1

τ

∫
Ω

|Tµ→ν2 − Tµ→ν1 |
2
dµ− lW 2

2 (ν1, ν2)

≥
(

1

τ
− l
)
W 2

2 (ν1, ν2),

where the penultimate inequality above fol-
lows from (3). We have also used the fact
that

∫
Ω
〈∇φ2 −∇φ1, Tµ→ν2 − Tµ→ν1〉 dµ =∫

Ω
|Tµ→ν2 − Tµ→ν1 |

2
dµ ≥ W 2

2 (ν1, ν2) (this follows from
an application of Lemma 13 in Appendix A), which implies
that

∫
Ω
〈∇φ2 −∇φ1, Tν1→ν2 − id〉 dν1 = W 2

2 (ν1, ν2). Since
τ < 1

l , we get that the functional G is strongly convex with
parameter 1

τ − l.

Assumption 1 (Atomless proximal descent sequence). We
assume that the sequence {µk}k∈N generated by (2) is such
that µk ∈ Pr(Ω) for all k ∈ N.

We remark here that sufficient regularity of the functional F
and the atomlessness of µ0 should guarantee validity of
Assumption 1. Since we do not offer a characterization of
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the regularity of F to this end, we retain Assumption 1 in
establishing the following theorem:

Theorem 1 (Convergence of proximal recursion (2)). Let
Ω ⊆ Rd be a compact, convex set, and let F : P(Ω) → R
be an l-smooth, strictly geodesically convex functional sat-
isfying the Neumann boundary condition ∇

(
δF
δµ

)
· n ≥ 0

on ∂Ω. Let µ0 be an absolutely continuous measure. Under
Assumption 1 on the generation of a proximal descent atomless
sequence, and for 0 < τ < 1/l, the sequence {µk}k∈N,
generated by the proximal recursion (2), converges weakly
to µ? = arg minν∈P(Ω) F (ν) as k →∞.

Proof. It follows that:

1

2τ
W 2

2 (µk, µk+1) + F (µk+1) ≤ F (µk)

⇐⇒ F (µk+1) ≤ F (µk)− 1

2τ
W 2

2 (µk, µk+1).

This implies that for µk 6= µk+1, we have F (µk+1) < F (µk)
and the sequence {F (µk)}k∈N is monotonically strictly de-
creasing. In addition, {µk}k∈N is contained in the sublevel set
S(µ0) of F (µ0).

From Lemma 1, S(µ0) is convex and compact in the
L2-Wasserstein space (P(Ω),W2). Thus, there is a weakly
convergent subsequence {µk`} →` µ ∈ S(µ0). Consider the
functional Gµ from (2), for µ ∈ P(Ω), such that Gµ(ν) =
1
2τW

2
2 (µ, ν) + F (ν). First, note that

|Gµk` (ν)−Gµ(ν)| = 1

2τ
|W 2

2 (µ, ν)−W 2
2 (µk` , ν)|

=
1

2τ
(W2(µ, ν) +W2(µk` , ν))|W2(µ, ν)−W2(µk` , ν)|,

for all `. Due to the triangular inequality, for all ν, |W2(µ, ν)−
W2(µk` , ν)| ≤W2(µk` , µ). Therefore,

|Gµk` (ν)−Gµ(ν)| ≤ 1

2τ
(W2(µ, ν) +W2(µk` , ν))W2(µ, µk`).

In addition, S(µ0) is a compact set and W2 is a continuous
functional, then there is a constant M such that

|Gµk` (ν)−Gµ(ν)| ≤MW2(µ, µk`),

for all ν. Since µk` →` µ, this implies the uniform conver-
gence of the functionals Gµk` (ν) to Gµ(ν). In particular, this
implies that for all ε > 0, there is an `0 such that for all
` ≥ `0, we have

|Gµk` (ν)−Gµ(ν)| < ε,

for all ν. Let µ+ = arg minν Gµ(ν), and recall that µk`+1 =
arg minν Gµk` (ν). Then, by the min properties:

Gµk` (µk`+1) ≤ Gµk` (ν) < Gµ(ν) + ε

=⇒ Gµk` (µk`+1) ≤ Gµ(µ+) + ε,

Gµ(µ+)− ε < Gµ(ν)− ε ≤ Gµk` (ν)

=⇒ Gµ(µ+)− ε ≤ Gµk` (µk`+1).

That is, we have |Gµk` (µk`+1)−Gµ(µ+)| ≤ ε for all ` ≥ `0.
The fact that µ is a fixed point for Gµ(ν) now follows from
the set of inequalities:

Gµ(µ+) ≤ Gµ(µ) = F (µ) ≤ Gµk` (µk`+1) < F (µk`)

The gap Gµk` (µk`+1)−Gµ(µ+) can be made arbitrarily small
by increasing `, so it must be that Gµ(µ) = F (µ) = Gµ(µ+),
which implies µ+ = µ is the solution to the minimization
problem of Gµ and satisfies ∇

(
δG
δν

)
µ

= 0. The equation
∇
(
δG
δν

)
µ

= 0 is equivalent to 1
τ∇φµ→µ + ∇

(
δF
δν

)
µ

= 0.
Since ∇φµ→µ = 0, then µ is a minimizer of F , and from the
strict geodesic convexity of F we get that the minimizer is
unique and µ = µ?. Note that we can apply this reasoning
to all the accumulation points µ̃ of the sequence {µk}. Since
all the convergent subsequences of {µk} have the same limit
µ? and {µk} is contained in S(µ0) which is compact, we
conclude that the whole sequence {µk} converges to µ? in
W2, i.e., weakly as k →∞.

The implementation of (2) can be challenging because
involves the solution of an infinite-dimensional optimization
problem. To address this, we determine the stochastic process
in Ω that equivalently describes the recursion (2). More
precisely, consider a proximal recursion in Ω from an initial
condition x0 ∈ Ω:

xk+1 ∈ arg min
z∈Ω

1

2τ
|xk − z|2 + fk(z), (4)

where {fk}k∈N is a sequence of functions on Ω. Suppose that
the initial condition x0 is in fact a random variable distributed
according to µ0 (denoted x0 ∼ µ0). We are interested in
defining the process in Ω, through an appropriate choice of
{fk}k∈N, which results in a consistent transport of the initial
measure µ0 according to the recursion (2).

Theorem 2 (Target dynamics in Ω). Let Ω ⊆ Rd be a
compact, convex set, and let F : Ω −→ R satisfy the conditions
of Theorem 1. Under Assumption 1, the proximal recursion (2),
for 0 < τ < 1/l, starting from µ0 ∈ Pr(Ω) is obtained as the
transport of µ0 by (4) with x0 ∼ µ0 and fk = δF

δν

∣∣
µk+1

, for
all k ∈ N.

Proof. We rewrite the single-step update in (2) from an abso-
lutely continuous probability measure µ ∈ P(Ω) as follows:

µ+ = arg min
ν∈P(Ω)

1

2τ
W 2

2 (µ, ν) + F (ν). (5)

From Lemma 2 the minimizer µ+ in (5) is unique. Let {vε}
be a smooth one-parameter family of vector fields such that
v0 = v, where v is any vector field on Ω. Now, define
a one-parameter family of absolutely continuous probability
measures {νε}ε∈R by means of ∂ενε +∇· (νεvε) = 0, subject
to vε · n = 0, and such that ν0 = µ+. Since µ+ is a critical
point of the objective function in (5), we have:
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0 =
d

dε

(
1

2τ
W 2

2 (µ, νε) + F (νε)

)∣∣∣∣
ε=0

=
1

τ

∫
Ω

〈
∇φµ+→µ,v

〉
dµ+ +

∫
Ω

〈ξ,v〉 dµ+

=

∫
Ω

〈
1

τ
∇φµ+→µ + ξ,v

〉
dµ+,

where ξ = ∇
(
δF
δν

)∣∣
ν=µ+ and ∇φµ+→µ = id−Tµ+→µ, with

Tµ+→µ : Ω→ Ω being the optimal transport map from µ+ to
µ. Since

∫
Ω

〈
1
τ∇φµ+→µ + ξ,v

〉
dµ+ = 0 for all v, it implies

that 1
τ∇φµ+→µ + ξ = 0 (µ+ a.e. in Ω), and we obtain:

1

τ
∇φµ+→µ + ξ =

1

τ

(
id−Tµ+→µ

)
+ ξ = 0,

which implies that:

Tµ+→µ = id +τξ. (6)

Let ϕ =
(
δF
δν

)∣∣
ν=µ+ . For any y ∈ Ω and τ < 1/l, consider:

y+ = arg min
z∈Ω

1

2τ
|y − z|2 + ϕ(z)︸ ︷︷ ︸

,gy(z)

. (7)

The uniqueness of the minimizer above follows from the
strong convexity of gy for τ < 1/l (this can be verified by
following a similar procedure as in the proof of Lemma 2, but
now in the Euclidean space). If y+ ∈ Ω̊ is a critical point of
gy in (7), then it satisfies y+ = y− τ∇ϕ(y+). Since ξ = ∇ϕ,
we can equivalently write y+ = (id +τξ)

−1
(y). That is, when

the image of y ∈ Ω under the arg min map in (7) is a critical
point in the interior of Ω, then it is also the inverse image of
y under the optimal transport map Tµ+→µ.

Now, for a y ∈ Ω̊, the inner product of the gradient
of gy at any point z ∈ ∂Ω on the boundary of Ω with
the outward normal n to ∂Ω at z is given by ∇gy · n =(

1
τ (z − y) +∇ϕ(z)

)
·n = 1

τ (z−y) ·n > 0, since ∇ϕ ·n = 0

and z−y points outward to Ω (as z ∈ ∂Ω and y ∈ Ω̊ and Ω is
convex). This implies that there exists a point z̃ in the interior
of Ω in a neighborhood of z such that gy(z̃) < gy(z), which
implies that z cannot be the minimizer. Thus, for any y ∈ Ω̊,
the minimizer of gy(z) = 1

2τ |y− z|
2 +ϕ(z) cannot lie on the

boundary ∂Ω, and must therefore lie in the interior of Ω and
be a critical point of the objective function gy . Now, when
y ∈ ∂Ω, if y+ /∈ Ω̊, it must be that y+ = y (otherwise we
obtain a contradiction for the same reason as above, the inner
product of ∇gy with the outward normal would be strictly
positive) and the argmin map (and the optimal transport map)
coincides with the identity map in this case.

It then follows that for any y ∈ Ω, its image y+ under the
argmin map is exactly its inverse image under the optimal
transport map Tµ+→µ. That is, the map in (7) is the inverse
of the optimal transport map Tµ+→µ. Thus, we have that the
map Tµ+→µ = id +τξ is well-defined and so is its inverse,
it holds that

(
Tµ+→µ

)−1

#
µ = (id +τξ)

−1
# µ = µ+, and (5) is

the lift to the space of probability measures of (7).
We therefore conclude that the proximal recursion (2) start-

ing from µ0 is the transport of µ0 by (4) with x0 ∼ µ0.

From a computational perspective, Theorem 2 still requires
the evaluation of the first variation δF

δν at µk+1, the transported
measure at the future time instant k + 1. To circumvent this
problem, we can alternatively consider the dynamics (4) with
the choice of f̃k = δF

δν

∣∣
µk

, which only requires the evaluation,
at time instant k, of the first variation δF

δν at µk. Consider the

l-smooth, geodesically-convex (linear) F̃ (ν) = Eν

[
δF
δµ

∣∣∣
µk

]
,

for ν ∈ Ω, which satisfies δF̃
δν = δF

δµ

∣∣∣
µk

. It follows from

Theorem 2 that the descent in P(Ω) corresponding to (4) with
f̃k = δF̃

δν

∣∣∣
µk

is given by:

µk+1 ∈ arg min
ν∈P(Ω)

1

2τ
W 2

2 (µk, ν) + Eν

[
δF

δµ

∣∣∣∣
µk

]
. (8)

The convergence of (8) can also be established as follows:

Theorem 3 (Convergence of recursion (8)). Let F : Ω→ R
satisfy the conditions of Theorem 1. The sequence {µk}k∈N

obtained as the transport of measure µ0 ∈ Pr(Ω) by (8) with
τ < 1/l, x0 ∼ µ0 and the choice f̃k = δF̃

δν

∣∣∣
µk

, converges

weakly to µ? = arg minν∈P(Ω) F (ν) as k →∞.

Proof. Suppose that {µk} is a sequence derived from (8).
From the l-smoothness of F and Lemma 15 (with µk+1 as
the reference measure), we have:∫

Ω

〈
∇

(
δF

δν

∣∣∣∣
µk

− δF

δν

∣∣∣∣
µk+1

)
, Tµk+1→µk − id

〉
dµk+1

≤ lW 2
2 (µk, µk+1).

By Lemma 2, we have that the objective functional in (8) is
strongly convex and therefore has a unique minimizer, since

Eν

[
δF
δµ

∣∣∣
µk

]
is linear in ν for a given µk. Following similar

steps as in the proof of Theorem 1 to characterize the critical
point of (8), we get that Tµk+1→µk = id +τ∇

(
δF
δν

∣∣
µk

)
, and

by substitution in the above, we obtain:

τ

∫
Ω

〈
∇

(
δF

δν

∣∣∣∣
µk

− δF

δν

∣∣∣∣
µk+1

)
,∇

(
δF

δν

∣∣∣∣
µk

)〉
dµk+1

≤ lW 2
2 (µk, µk+1).

Therefore, it follows that:

τ

∫
Ω

〈
∇

(
δF

δν

∣∣∣∣
µk+1

)
,∇

(
δF

δν

∣∣∣∣
µk

)〉
dµk+1

≥
(

1

τ
− l
)
W 2

2 (µk, µk+1),

where we have used the fact that:

τ

∫
Ω

〈
∇

(
δF

δν

∣∣∣∣
µk

)
,∇

(
δF

δν

∣∣∣∣
µk

)〉
dµk+1

=
1

τ

∫
Ω

〈
Tµk+1→µk − id, Tµk+1→µk − id

〉
dµk+1

=
1

τ
W 2

2 (µk, µk+1).
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Moreover, from the convexity of F and Lemma 17 (with µk+1

as the reference measure) we have:

F (µk) ≥ F (µk+1)

+

∫
Ω

〈
∇

(
δF

δν

∣∣∣∣
µk+1

)
, Tµk+1→µk − id

〉
dµk+1.

Substituting in the latest inequality, we obtain:

F (µk) ≥ F (µk+1) +

(
1

τ
− l
)
W 2

2 (µk, µk+1).

From this inequality, we deduce that µk+1 belongs to the
F -sublevel set of µk, and consequently that the sequence
{µk}k∈N is contained in S(µ0), the F -sublevel set of µ0. From
here, following similar steps as in the proof of Theorem 1,
we conclude that the sequence {µk}k∈N is convergent and
limK→∞W 2

2 (µK , µ̄) = 0 for some µ̄ ∈ S(µ0). As the
sequence {µk}k∈N is generated by (8), the limit µ̄ must be
one of its fixed points, again following similar reasoning as in
Theorem 1. Since F is strictly convex, we get that the only
fixed point of (8) is µ?. We therefore have µ̄ = µ?.

Now Theorem 2 allows us to consider the transport in P(Ω)
given by the following proximal scheme in Ω:

x+ = arg min
z∈Ω

1

2τ
|x− z|2 + f(z), (9)

where x ∼ µ and f = δF
δν

∣∣
µ

. This scheme is convergent
according to Theorem 3.

IV. MULTI-AGENT PROXIMAL DESCENT ALGORITHMS

In this section, we bring the sample-based, proximal descent
schemes of the previous section to a form that is closer to the
more familiar multi-agent cooperative control algorithms. We
achieve this by a direct discretization of the functional. By
doing so, we are able to retain some convergence properties of
the algorithms, as shown in this section. We then show that, in
the limit of space and time discretizations, the corresponding
algorithm recovers the lost properties.

We start by describing the multi-agent system by an appro-
priate probability distribution. Recall that the configuration of
the collective is given by x = (x1, . . . , xN ), with xi ∈ Ω
for i ∈ {1, . . . , N}. Let µ̂Nx = 1

N

∑N
i=1 δxi , be the discrete

measure in P(Ω) corresponding to the configuration x. For
a macroscopic description of the transport, we first let the
macroscopic configuration be specified by an absolutely con-
tinuous probability measure, and since µ̂Nx is is not absolutely
continuous, we consider an alternative absolutely continuous
probability measure µ̂h,Nx through its density function using a
smooth kernel, as follows:

µ̂h,Nx (x) =
1

N

N∑
i=1

Kh(x− xi), (10)

where h > 0 is the bandwidth of the kernel. With a slight
abuse of notation, we allow µ̂h,Nx to denote both the absolutely
continuous measure and its corresponding density function.
We also denote, for x ∈ Ω, µ̂h,1x simply by µ̂hx. Thus, we have
µ̂h,Nx = 1

N

∑N
i=1 µ̂

h
xi , for x ∈ ΩN .

Assumption 2 (Properties of kernel and kernel-based mea-
sures). For h > 0 and z ∈ Ω and a kernel-based probability
measure µ̂hz defined as in (10) for N = 1, the following hold:
(i) Smoothness: The kernel Kh is smooth, Kh ∈ C∞(Ω), for
every h > 0.
(ii) Monotonicity of support: For any z ∈ Ω and h1 < h2,
we let supp

(
µ̂h1
z

)
⊂ supp

(
µ̂h2
z

)
.

(iii) Containment: For every h > 0, there exists a set Ω̃h ⊂ Ω
(relatively) open, such that for z ∈ Ω̃h, the support of the mea-
sure µ̂hz satisfies supp(µ̂hz ) ⊂ Ω. Moreover, limh→0 Ω̃h = Ω
in Hausdorff distance.
(iv) Total variation convergence: Let M be the space
of all measureable functions over Ω. It holds that
limh→0 supf∈M

{∫
Ω
f(z)Kh(x− z) dvol(z)− f(x)

}
= 0,

that is, the kernel-based measure converges uniformly to the
Dirac measure as h→ 0.

An example kernel for (10) that satisfies Assump-
tion 2 is the truncated Gaussian kernel restricted to an
open ball Bh(xi) of radius h centered at xi, given by
Kh(x − xi) = 1

C exp
(
−|x−xi|2

2h2

)
1Bh(xi)(x), where C =∫

Bh(xi)
exp

(
−|x−xi|2

2h2

)
dvol(x) is the normalizing constant.

A. Discretization of functional F and its properties

We define an aggregate objective function Fh,N for the
multi-agent system as the discretization of the functional F ,
for h > 0, as follows:

Fh,N (x) = F (µ̂h,Nx ), (11)

and, subsequently, analyze its properties. First note that Fh,N

is invariant under permutations, that is, for x ∈ Ω̃Nh and P ∈
RN×N a permutation, we have Fh,N (x) = Fh,N ((P⊗Id) x).
The following lemma establishes the almost sure convergence
of the Fh,N to F as h→ 0, N →∞:

Lemma 3 (Convergence as h → 0, N → ∞). Let
Assumption 2 and the Fréchet differentiability of the func-
tional F hold, and let xi ∼ µ for i ∈ {1, . . . , N},
independent and identically distributed. Then, we have
limh→0 limN→∞ Fh,N (x1, . . . , xN ) = F (µ), µ-almost surely.

Proof. We first recall that Fh,N (x) = F (µ̂h,Nx ). By the
Glivenko-Cantelli Theorem [36] and Assumption 2-(iv), we
have:

lim
h→0,
N→∞

sup
f∈M

{
Eµ̂h,Nx

[f ]− Eµ[f ]
}

= 0, a.s.

We denote the above as µ̂h,Nx →u.a.s µ, i.e., µ̂h,Nx converges
uniformly almost surely to µ as h → 0 and N → ∞.
Note that this implies the (almost sure) weak convergence of
{µ̂h,Nx } to µ. Therefore, by continuity of F in the topology
of weak convergence (which follows from the fact that F
is Frećhet differentiable in the L2-Wasserstein space), we
have limh→0,N→∞ Fh,N (x) = limh→0,N→∞ F (µ̂h,Nx ) =
F (limh→0,N→∞ µ̂h,Nx ) = F (µ), almost surely.

The following lemma relates the derivative of the function
Fh,N to the Fréchet derivative of the functional F :
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Lemma 4 (Derivative of Fh,N ). Let Assumption 2 and the
Fréchet differentiability of the functional F hold, and let h >
0 with set Ω̃h as in Assumption 2-(iii). For x = (z, η) ∈
Ω̃h× Ω̃N−1

h , we have that the derivative of the function Fh,N

satisfies:

∂1F
h,N (z, η) =

1

N

∫
supp(µ̂hz )

∇ϕh,Nx dµ̂hz ,

where dµ̂hz = ρhz dvol with ρhz (x) = K(x − z, h), ϕh,Nx =
δF
δν |µ̂h,Nx

and ∂1 denotes the derivative w.r.t the first argument.

Proof. Let x(t) = (x1(t), . . . , xN (t)) be a curve in Ω̃Nh
parametrized by t ∈ R, with ẋ(0) = v = (v1, . . . ,vN ), where
vi ∈ Rd for all i ∈ {1, . . . , N}. As Fh,N is differentiable,
partial derivatives exist and we can write:

d

dt
Fh,N (x(0)) =

N∑
i=1

〈
∂iF

h,N (x(0)),vi
〉
.

Since Fh,N (x) = F (µ̂h,Nx ), using the Fréchet derivative of F ,
we can write:

d

dt
Fh,N (x(0)) =

1

N

N∑
i=1

∫
Ω

〈
∇ϕh,Nx(0),vi

〉
dµ̂hxi(0)

=
1

N

N∑
i=1

〈∫
Ω

∇ϕh,Nx(0) dµ̂
h
xi(0),vi

〉
.

This holds for all v = (v1, . . . ,vN ) and x(0) ∈ Ω̃Nh , thus, by
uniqueness of the partial derivatives, it holds that:

∂iF
h,N (x) =

1

N

∫
Ω

∇ϕh,Nx dµ̂hxi(0),

where ∂i denotes the derivative w.r.t. the ith argument, and we
consider any x(0) ∈ Ω̃Nh . From the previous expression:

∂1F
h,N (z, η) =

1

N

∫
Ω

∇ϕh,Nx dµ̂hz

=
1

N

∫
supp(µ̂hz )

∇ϕh,Nx dµ̂hz ,

where z ∈ Ω̃h, η ∈ Ω̃N−1
h , dµ̂hz = ρhz dvol with ρhz (x) =

K(x−z, h), and ϕh,Nx = δF
δν |µ̂h,Nx

, and the result follows.

From the invariance of Fh,N under permutations, the ex-
pression in Lemma 4 holds for the partial derivative of Fh,N

w.r.t every component of x.

Lemma 5 (α-smoothness of Fh,N ). Let Assumption 2 and
l-smoothness of F hold. Then there exists an α > 0 such that
Fh,N is α-smooth.

Proof. From l-smoothness of F , we have that the function
ϕ = δF

δν

∣∣
µ

is continuously differentiable on Ω for all µ. We
note that for x, y ∈ Ω̃h, µ̂hy(z) = µ̂hx(z + (x − y)) for all
z ∈ supp

(
µ̂hy
)
. For any x ∈ Ω̃Nh , we use (xi,x−i) ∈ Ω̃h ×

Ω̃N−1
h to denote the vector with its first entry equal to the ith

component of x and all others equal to the remaining N − 1
components of x. We now have:

∥∥∥∇Fh,N (y)−∇Fh,N (x)
∥∥∥

=

√√√√ N∑
i=1

|∂1Fh,N (yi,y−i)− ∂1Fh,N (xi,x−i)|2

=
1

N

√√√√ N∑
i=1

∣∣∣∣∫
Ω

∇ϕh,Ny (z)dµ̂hyi(z)−
∫

Ω

∇ϕh,Nx (z)dµ̂hxi(z)

∣∣∣∣2

=
1

N

√√√√ N∑
i=1

∣∣∣∣∫
Ω

[
∇ϕh,Ny (z + (yi − xi))−∇ϕh,Nx (z)

]
dµ̂hxi(z)

∣∣∣∣2
≤
∫

Ω

∣∣∣∇ϕh,Ny (z)−∇ϕh,Nx (z)
∣∣∣ dµ̂h,Nx (z)

+
1

N

N∑
i=1

∫
Ω

∣∣∣∇ϕh,Ny (z + (yi − xi))−∇ϕh,Ny (z)
∣∣∣ dµ̂hxi(z)

≤ lW2(µ̂h,Nx , µ̂h,Ny ) +M‖y − x‖
≤ α‖y − x‖,

where the penultimate inequality results from the l-smoothness
of F (which implies ϕ has a Lipschitz-continuous gradient in
expectation). Moreover, the final inequality results from the
fact that W2(µ̂h,Nx , µ̂h,Ny ) ≤ ‖y − x‖.

In what follows, we will make the following assumption
characterize the behavior of the discretization Fh,N along the
boundary through the following assumption:

Assumption 3 (Boundary conditions). The function Fh,N is
Fréchet differentiable and its derivative satisfies the boundary
condition ∂1F

h,N (z, ξ) · n(z) = 0 for z ∈ ∂Ω̃h and all ξ ∈
Ω̃N−1
h .

In general, note that Fh,N : ΩN → R is nonconvex in spite
of being the discretization of a strictly geodesically convex
functional F : P(Ω) → R. This is because the notion of
convexity of functions over ΩN , which is the domain of the
function Fh,N , is not implied by the notion of geodesic con-
vexity over the space of probability measures over Ω. In this
way, for x,y ∈ ΩN with

∑N
i=1

1
N δxi ,

∑N
i=1

1
N δyi ∈ P(Ω)

being the corresponding discrete measures, the supports of
the geodesics (when they exist) between

∑N
i=1

1
N δxi and∑N

i=1
1
N δyi in P(Ω) do not necessarily correspond to the

straight line segment between x and y in ΩN . In what follows,
we identify a condition that can guarantee convexity of the
discretized functional. We note that this condition is employed
later to prove the convergence of the discrete algorithms to
local minimizers.

Definition 1 (Cyclical monotonicity). A set Γ ⊂ Ω × Ω
is cyclically monotone if any sequence {(xi, yi)}Ni=1, with
(xi, yi) ∈ Γ, satisfies:

N∑
i=1

|xi − yi|2 ≤
N∑
i=1

|xi − yσ(i)|2,

where σ is any permutation, σ ∈ ΣN .

For δ > 0, we define a subset ∆δ ⊂ ΩN as follows:

∆δ =
{
z = (z1, . . . , zN ) ∈ Ω̊N

∣∣∣ |zi − zj | > δ, ∀ i 6= j
}
.
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For every x ∈ ∆δ , we now define a set Γx ⊂ ΩN such that
for all y ∈ Γx, we have:

N∑
i=1

|xi − yi|2 ≤
N∑
i=1

|xi − yσ(i)|2,

for any permutation σ. In other words, Γx is the subset of ΩN

such that for any y ∈ Γx, {(xi, yi)}Ni=1 is cyclically monotone.
We now establish through the following lemma that the set Γx

contains an open neighborhood of x:

Lemma 6 (Γx contains an open neighborhood of x). For
any δ > 0 and x ∈ ∆δ , there exists an open neighborhood
N (x) ⊂ ΩN of x such that N (x) ⊂ Γx.

Proof. For x ∈ ∆δ ⊂ ΩN , let y ∈ Ω̊N such that for all
i ∈ {1, . . . , N}, we have yi ∈ Bδ/2(xi), where Bδ/2(xi) is the
open δ/2-ball centered at xi ∈ Ω. Now for any j ∈ {1, . . . , N}
with j 6= i, we have |yi − xj | = |yi − xi + xi − xj | ≥
|xi − xj | − |yi − xi| > δ − δ/2 > δ/2, since |xi − xj | > δ as
x ∈ ∆δ and |yi − xi| < δ/2. Thus, among all (non-identity)
permutations σ, we have:

1

N

N∑
i=1

|xi − yσ(i)|2 >
δ2

4
>

1

N

N∑
i=1

|xi − yi|2.

Thus, we infer that y ∈ Γx for an arbitrary y ∈ ΩN ∩
ΠN
i=1Bδ/2(xi), and the result follows.

From Lemma 6 that for x ∈ ∆δ with a given δ > 0, there
is a h̄δ such that for all 0 < h < h̄δ , the supports of the
components µ̂hxi of the measure µ̂h,Nx can be made disjoint.

Lemma 7 (Relaxation to atomless measures). For any δ > 0
and x ∈ ∆δ and y ∈ Γx, there is h̄δ > 0 such that for
0 ≤ h ≤ h̄δ and the measures µ̂h,Nx , µ̂h,Ny defined in (10),
the optimal transport map Tµ̂h,Nx →µ̂h,Ny

from µ̂h,Nx to µ̂h,Ny

satisfies:(
Tµ̂h,Nx →µ̂h,Ny

− id
)

(z) = yi − xi, ∀ z ∈ supp
(
µ̂hxi
)
.

Proof. The proof applies a generalization of Brenier’s Theo-
rem in [37]. We consider convex functions χi : Ω → R, for
i ∈ {1, . . . , N} defined by:

χi(z) =
1

2
|z + yi − xi|2 .

We note that the gradient of χi, ∇χi(z) = z + yi − xi
defines a map that transports the measure µ̂hxi to µ̂hyi simply by
translation. In addition, this mapping defines a measure with
cyclically monotone support and marginals µ̂h,Nx and µ̂h,Ny . By
the generalization of Brenier’s Theorem [37] (c.f. Theorem 12
and extensions on uniqueness) a measure that has cyclic
monotone support is both unique and optimal in the Monge-
Kantorovich sense. Thus it coincides with the measure defined
by the χi and the statement of the lemma follows.

In this way, Lemma 7 essentially establishes that for x ∈ ∆δ

and any y ∈ Γx, the optimal transport from µ̂h,Nx to µ̂h,Ny is
simply achieved by the translation of components µ̂hxi along
the rays yi − xi to µ̂hyi for each i ∈ {1, . . . , N}.

Corollary 1 (L2-Wasserstein distance). For any δ > 0 and
x ∈ ∆δ and y ∈ Γx, there is a h̄δ > 0 such that for any
0 < h ≤ h̄δ:

W 2
2

(
µ̂h,Nx , µ̂h,Ny

)
=

1

N

N∑
i=1

|xi − yi|2.

With the above results we now establish the following:

Lemma 8 (Comparison lemma for Fh,N on cyclically mono-
tone sets). Let F be a Fréchet differentiable and geodesically
convex functional (in the sense of Definition 7). For any δ > 0,
x ∈ ∆δ , h ∈ (0, h̄δ] and y ∈ Γx:

Fh,N (y) ≥ Fh,N (x) +
〈
∇Fh,N (x),y − x

〉
.

Proof. For x ∈ ∆δ and y ∈ Γx, using the geodesic convexity
of the functional F and Lemma 17 with µ̂h,Nx as the reference
measure, it follows that:

Fh,N (y) = F (µ̂h,Ny )

≥ F (µ̂h,Nx ) +

∫
Ω

〈
∇ϕh,Nx , Tµ̂h,Nx →µ̂h,Ny

− id
〉
dµ̂h,Nx

= F (µ̂h,Nx ) +
1

N

N∑
i=1

∫
Ω

〈
∇ϕh,Nx , Tµ̂h,Nx →µ̂h,Ny

− id
〉
dµ̂hxi

= F (µ̂h,Nx ) +
1

N

N∑
i=1

∫
supp(µ̂hxi

)

〈
∇ϕh,Nx , Tµ̂h,Nx →µ̂h,Ny

− id
〉
dµ̂hxi

= F (µ̂h,Nx ) +
1

N

N∑
i=1

∫
supp(µ̂hxi

)

〈
∇ϕh,Nx , yi − xi

〉
dµ̂hxi

= F (µ̂h,Nx ) +
1

N

N∑
i=1

〈∫
supp(µ̂hxi

)

∇ϕh,Nx dµ̂hxi , yi − xi

〉

= Fh,N (x) +

N∑
i=1

〈
∂1F

h,N (xi,x−i), yi − xi
〉
,

thereby establishing the claim.

We remark here that Fh,N is convex in the limited sense
established by the comparison result in Lemma 8, and this
does not necessarily generalize to the entire domain ΩN , due
to which the function Fh,N can be non-convex in general.

B. Multi-agent proximal descent algorithms

We formulate the proximal descent algorithm on the func-
tion Fh,N as follows:

x+ ∈ arg min
z∈Ω̃Nh

1

2τ
‖x− z‖2 + Fh,N (z). (12)

Even though Fh,N is in general nonconvex, we can establish
strong convexity of the proximal descent objective function
in (12) under some conditions through the following lemma:

Lemma 9 (Strong convexity of objective function). For an α-
smooth function Fh,N , the function Gh,Nx (z) = 1

2τ ‖x−z‖2 +
Fh,N (z) is

(
1
τ − α

)
-strongly convex for 0 < τ < 1

α .

Proof. From Lemma 5 on α-smoothness of Fh,N , we have:∣∣〈∇Fh,N (y)−∇Fh,N (x),y − x
〉∣∣ ≤ α‖y − x‖2.
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With Gh,Nx (z) = 1
2τ ‖x− z‖2 + Fh,N (z), we have:〈

∇Gh,Nx (z1)−∇Gh,Nx (z2), z1 − z2

〉
=

〈
1

τ
(z1 − z2) +∇Fh,N (z1)−∇Fh,N (z2) , z1 − z2

〉
=

1

τ
‖z1 − z2‖2 +

〈
∇Fh,N (z1)−∇Fh,N (z2) , z1 − z2

〉
≥ 1

τ
‖z1 − z2‖2 − α‖z1 − z2‖2

=

(
1

τ
− α

)
‖z1 − z2‖2,

thereby establishing the claim.

It follows from Lemma 9 that the minimizer in (12) is
unique for α-smooth Fh,N and sufficiently small τ . Now,
with x−i = (x1, . . . , xi−1, xi+1, . . . , xN ) ∈ Ω̃N−1

h , we can
write Fh,N (x1, . . . , xN ) = 1

N

∑N
i=1 F

h,N (x1, . . . , xN ) =
1
N

∑N
i=1 F

h,N (xi,x−i). By means of this decomposition, the
proximal gradient descent (12) can be decomposed into the
following agent-wise update, for i ∈ {1, . . . , N}:

x+
i = arg min

z∈Ωh

1

2τ
|xi − z|2 + Fh,N (z,x+

−i).

where Ωh is the closure of Ω̃h. Note that the above scheme
requires x+

−i. In other words, to implement the above al-
gorithm, every agent i, at time k, requires the positions of
the other agents at a future time k + 1, posing a hurdle
for implementation. To avoid this problem, we consider the
following proximal descent scheme:

x+
i = arg min

z∈Ωh

1

2τ
|xi − z|2 + Fh,N (z,x−i), (13)

for every i ∈ {1, . . . , N}. It follows from Lemma 9 that the
objective function in (13) is also strongly convex, and thereby
has a unique minimizer. We now present the following result
on the convergence of (13) to the local minimizers of Fh,N :

Theorem 4 (Convergence of (13) to critical points of Fh,N ).
Let Fh,N be α-smooth and satisfy Assumption 3. For τ < 2

3α ,
the sequence {x(k)}k∈N generated by the update scheme (13)
converges to a critical point x∗ of Fh,N that is not a local
maximizer, for all initial conditions x(0) ∈ Ω

N

h . Moreover, if
the critical point x∗ ∈ ∆δ for some δ > 0 and h ∈ (0, h̄δ],
then x∗ is a local minimizer.

Proof. We first consider the objective function in (13), Ji(z) =
1
2τ |xi − z|

2 + Fh,N (z,x−i), with z ∈ Ωh. The inner product
of the gradient of Ji on z ∈ ∂Ωh with the outward normal ñ
to ∂Ωh, is given by:

∇Ji(z) · ñ(z) =
1

τ
(z − xi) · ñ(z) + ∂1F

h,N (z,x−i) · ñ(z)

=
1

τ
(z − xi) · ñ(z) ≥ 0,

with the inequality being strict when xi /∈ ∂Ωh. This implies
that the x+

i ∈ ∂Ωh cannot be a minimizer if xi /∈ ∂Ωh, and if
xi ∈ ∂Ωh, we will have x+

i = xi. In both cases, the minimizer
x+
i is also a critical point of the function Ji. This allows us

to express (13) equivalently by:

x+
i = xi − τ∂1F

h,N (x+
i ,x−i). (14)

We note that in the limit τ → 0, we get a gradient flow that can
be shown to converge to a critical point of Fh,N . We therefore
hope that this property is preserved over a neighborhood of
τ = 0. In what follows, we establish that this is indeed the case
and provide a sufficient strict upper bound on τ for which the
property is preserved. From α-smoothness of Fh,N , we get:

∣∣∣∣∣Fh,N (x+)− Fh,N (x)−
N∑
i=1

〈
∂1F

h,N (xi,x−i), x
+
i − xi

〉∣∣∣∣∣
≤ α

2
‖x+ − x‖2.

We can rewrite the above as:

∣∣∣∣∣Fh,N (x+)− Fh,N (x)−
N∑
i=1

〈
∂1F

h,N (x+
i ,x−i), x

+
i − xi

〉
−

N∑
i=1

〈
∂1F

h,N (xi,x−i)− ∂1F
h,N (x+

i ,x−i), x
+
i − xi

〉∣∣∣∣∣
≤ α

2
‖x+ − x‖2.

By (14), we now have−
∑N
i=1

〈
∂1F

h,N (x+
i ,x−i), x

+
i − xi

〉
=

1
τ ‖x

+ − x‖2 and by the α-smoothness of Fh,N :∣∣∣∣∣
N∑
i=1

〈
∂1F

h,N (xi,x−i)− ∂1F
h,N (x+

i ,x−i), x
+
i − xi

〉∣∣∣∣∣
≤ α‖x+ − x‖2.

From the above inequalities, we therefore obtain:

Fh,N (x+) ≤ Fh,N (x)−
(

1

τ
− 3α

2

)
‖x+ − x‖2.

Thus, for τ < 2
3α , when every agent follows the update (13),

we get a descent in Fh,N , and x+ belongs to the Fh,N -
sublevel set of x. We can express the above inequality for
any time instant k ∈ N as:

Fh,N (x(k + 1)) ≤Fh,N (x(k))−
(

1

τ
− 3α

2

)
‖x(k + 1)− x(k)‖2.

Summing over k = 0, . . . ,K − 1, we obtain:

Fh,N (x(K)) ≤Fh,N (x(0))−
(

1

τ
− 3α

2

) K∑
k=1

‖x(k)− x(k − 1)‖2,

and it follows that:
K∑
k=1

‖x(k)− x(k − 1)‖2

≤
(

1
1
τ
− 3α

2

)(
Fh,N (x(0))− Fh,N (x(K))

)
.

Since the sequence {x(k)}k∈N belongs to the Fh,N -sublevel
set of x(0) (for all x(0) ∈ Ω

N

h ), which is a subset of Ω
N

h

(compact), it is precompact. By the boundedness above, in the
limit K →∞, we get limK→∞ ‖x(K)− x(K − 1)‖2 = 0.

Since Ωh is compact, there is a convergent subsequence
{x(k`)} to a point x ∈ Ω

N

h . Given x, define the mapping

Gh,Nx (z) =

(
1

τ
− 3α

2

)
‖x− z‖2 + Fh,N (z), z ∈ Ω

N

h .
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Let x+ be the next iteration of (14) from x. Then, from the
above, Gh,Nx (x+) ≤ Fh,N (x) = Gh,Nx (x). Due to the fact
that x(k`) converges to x, we also have that Gh,Nx (x) =

Fh,N (x) ≤ Gh,Nx(k`)
(x(k` + 1)), for all `. Following similar

steps as in the proof of Theorem 1, one can find a constant M
such that |Gh,Nx (z)−Gh,Nx(k`)

(z)| ≤M‖x−x(k`)‖ for all z ∈
Ω
N

h . This implies that |Gh,Nx (x+) − Gh,Nx(k`)
(x(k` + 1))| ≤ ε,

for all ` ≥ `0. It is easy to see that Gh,Nx (x+) ≤ Gh,Nx (x) ≤
Gh,Nx(k`)

(x(k` + 1)) holds, and thus Gh,Nx (x+) = Fh,N (x),
which can only happen when x+ = x. In other words, x is a
fixed point of (14), and we thereby get:

∂1F
h,N (xi,x−i) = 0, ∀ i ∈ {1, . . . , N},

and ∇Fh,N (x) = 0. From here, the point x cannot be a local
maximizer since {Fh,N (x(k`))}k∈N is decreasing and lower-
bounded by Fh,N (x) and, consequently, every neighborhood
of x contains at least one point with a higher value of Fh,N .
Note that this conclusion applies for every accumulation point
of the entire sequence {x(k)}k∈N.

Finally, suppose that an accumulation point x satisfies x ∈
∆δ , for some δ > 0 and h ∈ (0, h̄δ]. From Lemmas 8 and 6,
we conclude that there exists an open ball B(x) ⊂ ΩN such
that for all x ∈ B(x), we have Fh,N (x) ≥ Fh,N (x), which
implies that x must be a local minimizer.

Theorem 4 establishes the convergence of (13) to critical
points of the function Fh,N , which are not necessarily local
maximizers. This is a weaker result than Theorem 2, which
established convergence of the transport scheme (9) to the
global minimizer µ? of F . The guarantee is weakened after the
discretization of F , which is involved in defining the multi-
agent transport scheme (the convergence results for F employ
the convexity properties of F , which are lost by Fh,N .) How-
ever, we can still hope to achieve the convergence to the global
minimizer in the limit of particle and time discretizations,
thereby guaranteeing best performance asymptotically. In the
section that follows, we evaluate this possibility.

C. Continuous-time and many-particle limits

We now derive the continuous-time and many-particle limits
for the multi-agent transport scheme (13), retrieving (9) from
(13) as N →∞ and h→ 0 limit. We know from Theorem 2
that transport of a probability measure µ0 by (9), which is
identical to the following:

x+ = arg min
z∈Ω

1

2τ
|x− z|2 + ϕ(z),

x ∼ µ.
(15)

with ϕ ≡ δF
δν
∣∣µ, is guaranteed to converge to the global

minimizer µ∗ of F . Informally, we see that as τ → 0 in (15),
we have that x+ → x and we let v(x) = limτ→0

x+−x
τ =

−∇ϕ(x). We can thus expect the solutions to (15) converge
to the solution of the gradient flow under the vector field
v = −∇ϕ. We now show, in a weak sense, that the above
reasoning holds. We observe that the vector field v = −∇ϕ
satisfies a zero-flux boundary condition v · n = ∇ϕ · n = 0
on ∂Ω owing to the definition of the functional F .

Proposition 1 (Model of transport in the continuous time and
many-particle limits). Let Ω and F satisfy the assumptions of
Theorem 1. The following hold:
(i) Convergence of update scheme: The scheme (13) converges
in distribution to (15) in the limit N →∞.
(ii) Gradient flow: For every decreasing sequence {τn}n∈N

satisfying τ0 < 1
l and limn→∞ τn = 0, the sequence

of solutions {xn}n∈N to (15) with corresponding {τn}n∈N

contains a convergent subsequence, and the limit is a weak
solution to the gradient flow:

∂tX
t(x) = −∇ϕt(Xt(x)), (16)

with X0(x) = x, µ(t) = Xt
#µ0 and ϕt = δF

δν

∣∣
µ(t)

.
(iii) Continuity equation: Let T > 0 and v ∈ L∞([0, T ] ×
Lip(Ω)d), and ẋi(t) = v(t, xi(t)) for any t ∈ [0, T ] and i ∈
N, with xi(0) ∼i.i.d µ0. Then, for xN = (x1, . . . , xN ) for any
N ∈ N, the sequence {xN}N∈N converges in a distributional
sense to a solution µ of the continuity equation:

∂µ

∂t
+∇ · (µv) = 0, µ(0) = µ0. (17)

Owing to space constraints, we skip here the proof of
Proposition 1. The gradient flow on the functional F is defined
here as the transport (17) with v = −∇ϕ as in (16). Recall that
the gradient flow satisfies the boundary condition ∇ϕ · n = 0
on ∂Ω. The following theorem establishes the asymptotic
stability of the gradient flow on F , with convergence to
µ∗ ∈ P(Ω), the global minimizer of F as t→∞:

Theorem 5 (Asymptotic stability of gradient flow). Let Ω ⊆
Rd be a compact, convex set and F : Ω→ R be an l-smooth
and strictly geodesically convex functional with minimizer µ?.
Then the solutions to the gradient flow w.r.t. F converge to µ?

in the limit t→∞.

Proof. Let {µt}t≥0 be a solution gradient flow w.r.t. F in
P(Ω). We have:

d

dt
F (µt) =

∫
Ω

〈
∇
(
δF

δµ

)
,v

〉
dµt = −

∫
Ω

∣∣∣∣∇(δFδµ
)∣∣∣∣2 dµt ≤ 0.

This implies that F (µt) ≤ F (µ0) for all t ≥ 0, and
therefore {µt}t≥0 is contained in the sublevel set S(µ0) =
{ν ∈ P(Ω)|F (ν) ≤ F (µ0)}. From Lemma 1, we have that
S(µ0) is compact in (P(Ω),W2), which implies that the
orbit {µt}t≥0 is precompact. Moreover, the functional F is
lower bounded in S(µ0) by F (µ∗). By the LaSalle invariance
principle for Banach spaces [38]–[40], we have that the orbit
converges in (P(Ω),W2) (also weakly, from Lemma 14)
asymptotically to the largest invariant set contained in Ḟ−1(0).
We have:

Ḟ−1(0) =

{
µ ∈ P(Ω)

∣∣∣∣∇(δFδµ
)

= 0, a.e. in Ω

}
,

which implies that the Fréchet derivative of F is zero in the
set Ḟ−1(0). This corresponds to the set of critical points of
F and from the strict geodesic convexity of F , we therefore
get that Ḟ−1(0) = {µ?}.
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V. MULTI-AGENT COVERAGE CONTROL ALGORITHMS

In this section, we aim to place well-known multi-agent
coverage control algorithms in the literature [1], [4] within the
multiscale theoretical framework established in the previous
sections, in an effort to understand the macroscopic behavior
of the coverage algorithms. To do this, we first relate the
corresponding coverage objective functions used in both for-
mulations and then apply our results to analyze their behavior
in the limit N →∞. We begin with a widely-used aggregate
objective function for coverage control of multi-agent systems,
the multi-center distortion function, and then obtain its func-
tional counterpart in the space of probability measures. The
multi-center distortion function Hf : ΩN → R≥0 [1] is given
by:

Hf (x) =

∫
Ω

min
i∈{1,...,N}

f(|x− xi|)dµ∗(x). (18)

where f : R≥0 → R≥0 is a non-decreasing function and
µ?(x) = ρ?(x) dvol, with ρ? a target density in Ω. The
Voronoi partition of Ω, {Vi}Ni=1, generated by x ∈ ΩN

facilitates the analysis of Hf and is defined is as follows:

Vi = {x ∈ Ω | |x− xi| ≤ |x− xj | ∀j ∈ {1, . . . , N}} , ∀ i.

The following proposition establishes the relationship between
Hf and the optimal transport cost Cf in (1):

Proposition 2 (Optimal transport formulation of coverage
objective). The aggregate objective function Hf as defined
in (18), satisfies:

Hf (x) = min
w∈∆N−1

Cf

(
N∑
i=1

wiδxi , µ
?

)
.

where ∆N−1 = {w ∈ RN≥0

∣∣∣ ∑N
i=1 wi = 1} is the

(N − 1)-simplex. Furthermore, the minimizing weights w? =
(w?1 , . . . , w

?
N ) are given by w?i = µ?(Vi), where {Vi}Ni=1 is

the Voronoi partition of Ω.

We skip the proof of Proposition 2 here owing to space
constraints. The following corollary applies Proposition 2 to
the special case of f(x) = x2:

Corollary 2 (L2-Wasserstein distance as aggregate ob-
jective function). Applying Proposition 2 with a quadratic
cost f(x) = x2 (and the corresponding aggregate objective
function H2), we have:

H2(x) = W 2
2

(
N∑
i=1

µ?(Vi)δxi , µ?
)
.

We now investigate the properties of the aggregate objective
function Hf in the limit N →∞.

Lemma 10. Let µ? ∈ P(Ω) be an absolutely continuous
measure defining Hf . Let xi ∼i.i.d µ, for i ∈ {1, . . . , N},
where µ ∈ P(Ω) is any absolutely continuous probability
measure such that supp(µ) ⊇ supp(µ?). It holds almost surely
that limN→∞Hf (x) = 0.

Proof. From the Glivenko-Cantelli theorem, it follows that, as
N →∞, the limit

∑N
i=1 µ

?(Vi)δxi → µ? holds almost surely,

in the weak sense (from the expectation w.r.t.
∑N
i=1 µ

?(Vi)δxi
of any simple function). Thus, by the continuity of Cf :

lim
N→∞

Hf (x) = lim
N→∞

Cf

(
N∑
i=1

µ?(Vi)δxi , µ
?

)
= 0.

The previous result holds for any configuration of the points
{xi}Ni=1 as long as they are sampled from a distribution whose
support contains that of µ?. Note that this is consistent with
what happens in the discrete particle case, in the coverage
control problem. In this case, critical point configurations are
given by the so-called centroidal Voronoi configurations [1].
However, as the number of agents goes to infinity, any con-
figuration of points asymptotically become centroids of their
Voronoi regions. Thus, those positions correspond to local
optimizers of the discrete coverage control problem. In this
way, while the empirical measure 1

N

∑N
i=1 δxi corresponding

to the points {xi}Ni=1 samples from µ converges uniformly
almost surely to µ (Glivenko-Cantelli theorem), the quanti-
zation energy Hf , converges to zero, which does not really
reflect the discrepancy between the measures µ and µ?. Thus,
the functional Hf suffers from this deficiency as a candidate
aggregate function for coverage control in the large scale limit.

Consider instead the following aggregate objective function:

H̄f (x) = Cf

(
1

N

N∑
i=1

δxi , µ
?

)
. (19)

This performance metric has been used before in the so-called
area (weight)-constrained coverage control problem [4] (the
weights wi = 1/N are balanced in the case of (19)).

Lemma 11. Let µ? ∈ P(Ω) be an absolutely continuous
measure and let H̄f be defined as in (19). Let xi ∼i.i.d µ,
for i ∈ {1, . . . , N}, where µ ∈ P(Ω) is any absolutely
continuous probability measure. It holds almost surely that
limN→∞ H̄f (x) = Cf (µ, µ?).

Proof. This can be seen from the following:

H̄f (x) = Cf

(
1

N

N∑
i=1

δxi , µ
?

)

= min
T :Ω→{xi}Ni=1

T#µ
?= 1

N

∑N
i=1 δxi

∫
Ω

f(|x− T (x)|)dµ?(x)

= min
T :Ω→{xi}Ni=1

µ?(T−1({xi}))= 1
N

∫
Ω

f(|x− T (x)|)dµ?(x).

Similar to Hf (x), the functional H̄f can be expressed as the
sum of integrals over certain space partition. However, this
case involves a generalized Voronoi partition {Wi}Ni=1:

Wi = {x ∈ Ω |f(|x− xi|)− ωi ≤ f(|x− xj |)− ωj } ,
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where {ω1, . . . , ωN} are chosen such that µ?(Wi) = 1/N for
all i ∈ {1, . . . , N}. We refer the reader to [4] for a detailed
treatment. We can now write:

H̄f (x) =

N∑
i=1

∫
Wi

f(|x− xi|) dµ?(x).

Now, by letting xi ∼i.i.d µ, where µ ∈ P(Ω) is any absolutely
continuous probability measure, in the limit N →∞, we have
1
N

∑N
i=1 δxi converging uniformly almost surely to µ. In this

way, by the continuity of Cf , we have:

lim
N→∞

H̄f (x) = Cf (µ, µ?) , a.s.

Similarly to (12), we can formulate a multi-agent proximal
descent algorithm on the aggregate objective function H̄f , with
f(x) = x2, as follows, for every i ∈ {1, . . . , N}:

x+
i = arg min

z∈Ω

1

2τ
|xi − z|2 + H̄f (z,x−i). (20)

Note that this is a proximal formulation of the load-balancing
variant of the Lloyd’s algorithm in [4].

Theorem 6 (Convergence to generalized centroidal Voronoi
configuration and µ?). The Lloyd proximal descent (20),
with f(x) = x2, converges to a local minimizer of H̄f .
Furthermore, as N → ∞, the proximal descent scheme (20)
converges to:

x+ = arg min
z∈Ω

1

2τ
|x− z|2 + φ(z), (21)

with x ∼ µ and φ =
δW 2

2 (ν,µ?)
δν

∣∣∣
µ

, the Kantorovich potential

for optimal transport from µ to µ?. The sequence {µk}k∈N

obtained as the transport of an absolutely continuous proba-
bility measure µ0 ∈ P(Ω) by (21), with x0 ∼ µ0, converges
weakly to µ? as k →∞.

Proof. Let µ̂h,Nx be defined as in (10) with a kernel satisfy-
ing Assumption 2. We see that Cf (µ̂h,Nx , µ?) as a function
of x is α-smooth for some α > 0 (from Proposition 4 in
Appendix B and an application of Lemma 5). Further, we note
that H̄f (x) = limh→0 Cf (µ̂h,Nx , µ?) and the α-smoothness
property carries over to the limit, as well as the comparison
Lemma 8 for H̄f (x). The convergence of (20) with f(x) = x2

to a local minimizer of H̄f then follows from a similar version
of Theorem 4 applied to H̄f (x). It is easy to see that these
local minima correspond to generalized centroidal Voronoi
configurations as in [4].

Following a similar reasoning as in Proposition 1 for F =
Cf and Fh,N = Ch,Nf , we have that, as N →∞, the proximal
descent scheme (20) converges to (21).

With F (ν) = 1
2W

2
2 (ν, µ∗), let Gµk(ν) = 1

2τW
2
2 (µk, ν) +

F (ν). The Fréchet derivative of Gµk is given by
∇
(
δGµk (ν)

δν

∣∣∣
ν

)
= 1

τ∇φν→µk + ∇φν→µ∗ . Moreover, at

the critical point µk+1 of Gµk we have 1
τ∇φµk+1→µk +

∇φµk+1→µ∗ = 1
τ

(
id−Tµk+1→µk

)
+
(
id−Tµk+1→µ∗

)
= 0,

which implies that
(
Tµk+1→µk − id

)
= τ

(
id−Tµk+1→µ∗

)
.

We then have W2(µk, µk+1) = τW2(µk+1, µ
∗). For any

(and only) ν on the geodesic between µk and µ∗, we have
W2(µk, µ

∗) = W2(µk, ν) + W2(ν, µ∗) (wherein the triangle
inequality is an equality), and this is the case if and only
if
∫

Ω
〈id−Tν→µk , Tν→µ∗ − id〉 dν = 2W2(µk, ν)W2(ν, µ∗).

We see that this is indeed the case for ν = µk+1, from which
we infer that µk+1 lies on the geodesic between µk and µ∗. We
therefore get that {µk}k∈N lies on the geodesic connecting µ0

and µ∗. Now, from Proposition 3 in Appendix B it follows that
W 2

2 (·, µk) is generalized geodesically convex with reference
measure µk, and similarly W 2

2 (·, µ∗) is generalized geodesi-
cally convex with reference measure µ∗, the two measures
µk and µ∗ are interchangeable as reference measures along
the geodesic between them. It then follows that the function
Gµk is generalized geodesically convex along the geodesic
between µ0 and µ∗, with reference measure µk. Then, weak
convergence to µ? of the sequence {µk}k∈N obtained as the
transport of an absolutely continuous probability measure µ0 ∈
P(Ω) by (21) follows from an application of Theorem 3 and
the strict (generalized) geodesic convexity and l-smoothness
of W 2

2 (·, µ?) (by an application of Propositions 3 and 4 in
Appendix B).

It is known that the generalized Lloyd’s algorithm results in
convergence to generalized centroidal Voronoi configurations
[4], where the generators {x1, . . . , xN} of the generalized
Voronoi partition are also the centroids of their respective
generalized Voronoi cells. The generalized centroidal Voronoi
configuration is, however, not unique, and this relates to the
fact that the convergence is to the local minimizers of H̄f ,
which is typically nonconvex.

We now present results from numerical experiments for the
coverage control algorithm (20) for the objective function H̄f ,
with f(x) = x2. We first sample i.i.d. from a multimodal
Gaussian distribution and normalize the histogram of the
samples over a discretization of the spatial domain to obtain
a (quantized) target distribution over the domain. We then
implement the coverage control algorithm (20) for various
sizes N of the multi-agent system, from random initializations
of the agent positions. We present the following: (i) the steady
state distribution of agents (in Figure 1), and (ii) the value
of the coverage objective function as a function of time (in
Figure 2), for various sizes N of the multi-agent system.

VI. CONCLUSION

In this paper, we have introduced a multiscale framework for
the analysis and design of multi-agent coverage algorithms that
begins with a macroscopic specification of the target coverage
behavior to derive provably-correct microscopic, agent-level
algorithms that achieve the target macroscopic specification.
Our class of macroscopic proximal descent schemes exploit
convexity properties of coverage objective functionals to steer
the macroscopic configuration, which are then translated into
agent-level algorithms via a variational discretization. We
uncover the relationship with previously studied coverage
algorithms, and obtain insights into the large-scale behavior
of these algorithms. Future work will consider the extension
to a constrained optimization framework to include such
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Fig. 1. The figure shows the steady state distribution of the agents implementing the coverage algorithm (20) with the target distribution depicted in grayscale,
for N = 10, 25, 50, 100. We observe that the distribution of the agents more closely approximates the target distribution as the size N of the system increases.
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Fig. 2. The figure is a representative plot of the value of the aggregate
objective function H̄f (xt) (with f(x) = x2) vs. time t for various sizes N
of the multi-agent system and random initializations of agent positions. We
observe that the steady state value decreases with the size N of the system,
in accordance with our theoretical results.

constraints as sensing limitations, dynamic and collision-
avoidance constraints.
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APPENDIX A
MATHEMATICAL PRELIMINARIES

We present here the mathematical preliminaries on con-
vergence of measures, the L2-Wasserstein space and smooth-
ness and convexity notions for functions defined on the L2-
Wasserstein space.

A. Weak convergence of measures

The results of this manuscript rely on the notions of weak
convergence in P(Ω), the topology of weak convergence, its
metrizability, and the compactness of sets of P(Ω). We recall
them here and refer the reader to [41] for more information.

Definition 2 (Weak convergence). Let Ω ⊆ Rd, and P(Ω)
be its set of probability measures. A sequence {µk}k∈N ⊆
P(Ω) converges weakly to µ ∈ P(Ω) if for any bounded and
continuous function f on Ω, limk→∞

∫
Ω
fdµk =

∫
Ω
fdµ.

Equivalently, in the definition above, the sequence {µk}k∈N

in P(Ω) is said to converge to µ in P(Ω) equipped with
the topology of weak convergence. The space of probability
measures P(Ω) equipped with the topology of weak con-
vergence is metrizable [41]. In other words, there exists a
metric on P(Ω) such that the topology of weak convergence

is obtained as the topology induced by the metric. One such
metric is the Wasserstein distance, see Section A-B. We now
state Prokhorov’s theorem [41] on the equivalence between
tightness and precompactness of a collection of probability
measures over a separable and complete metric (Polish) space.

Lemma 12 (Prokhorov’s theorem). Let Ω be a complete
metric space, and let K ⊆ P(Ω). The closure of K w.r.t. the
topology of weak convergence in P(Ω) is compact if and only
if K is tight. That is, K is tight if for any ε > 0 there exists a
compact Kε ⊆ Ω such that µ(Kε) > 1− ε, for all µ ∈ K.

Corollary 3 (Compactness of P(Ω)). Let Ω ⊆ Rd a compact
set. Then, the closure of P(Ω) w.r.t. the topology of weak con-
vergence in P(Ω) is compact. This follows from Prokhorov’s
theorem in Lemma 12, since P(Ω) is tight: for any ε > 0, we
choose Ω itself as the compact set and have µ(Ω) = 1 > 1−ε
for any µ ∈ P(Ω). Moreover, since P(Ω) is also closed
w.r.t. the topology of weak convergence, it is therefore compact.

B. The L2-Wasserstein distance

The L2-Wasserstein distance between two probability mea-
sures µ, ν ∈ P(Ω) is given by:

W 2
2 (µ, ν) = min

π∈Π(µ,ν)

∫
Ω×Ω

|x− y|2 dπ(x, y), (22)

where Π(µ, ν) is the space of joint probability measures
over Ω × Ω with marginals µ and ν. The definition of
L2-Wasserstein distance in (22) follows from the so-called
Kantorovich formulation of optimal transport. An alternative
formulation of this problem, called the Monge formulation of
optimal transport, is given below:

W 2
2 (µ, ν) = min

T :Ω→Ω
T#µ=ν

∫
Ω

|x− T (x)|2 dµ(x). (23)

In the Monge formulation (23), the minimization is carried
out over the space of maps T : Ω → Ω for which the
probability measure ν is obtained as the pushforward of µ.
This can be viewed as a deterministic formulation of optimal
transport, where the transport is carried out by a map, whereas
the Kantorovich formulation (22) can be seen as a problem
relaxation, where the transport plan is described by a joint
probability measure π over Ω × Ω, with µ and ν as its
marginals. It is to be noted that the Monge formulation
does not always admit a solution, while the Kantorovich
problem does. Roughly speaking, the Kantorovich formulation
is the “minimal” extension of the Monge formulation, as
both problems attain the same infimum [42]. Further, the
two formulations (22) and (23) are equivalent under certain
conditions, and in the sense laid out in the ensuing lemma.

Lemma 13 (Monge-Kantorovich optimal transport, cf. [42],
Theorem 1.17 for c(x, y) = |x − y|2). Assume that Ω is
compact in Rd. There exists a minimizer π∗ to the Kantorovich
problem (22). Moreover, if the measure µ is atomless, and
µ(∂Ω) = 0, then the minimizer π∗ is unique, the Monge
formulation (23) admits a unique minimizer T ∗, and it holds
that π∗ = (id, T ∗)#µ, with id : Ω → Ω the identity
mapping. Furthermore, there exists a Lipschitz continuous
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function φ : Ω → R, called the Kantorovich potential, such
that ∇φ = id−T ∗.

The space of probability measures P(Ω) endowed with the
L2-Wasserstein distance W2 will equivalently be referred to as
the L2-Wasserstein space (P(Ω),W2) over Ω. The following
lemma, which follows from Theorem 6.9 in [43], establishes
the equivalence between convergence in the sense of the
topology of weak convergence and in the L2-Wasserstein
metric.

Lemma 14 (Convergence in (P(Ω),W2)). For compact
Ω ⊂ Rd, the L2-Wasserstein distance W2 metrizes the
weak convergence in P(Ω). That is, a sequence of measures
{µk}k∈N in P(Ω) converges weakly to µ ∈ P(Ω) if and only
if limk→∞W2(µk, µ) = 0.

C. Derivatives of functionals on atomless measures

We start by introducing the notion of first variation of a
functional on P(Ω) as follows:

Definition 3 (First variation of a functional on P(Ω)).
Let F : P(Ω) → R, µ0 ∈ P(Ω) and let {µε}ε∈R be a
smooth one-parameter family of probability measures. Suppose
that there exists a unique δF

δµ (µ0) such that d
dεF (µε)

∣∣
ε=0

=

limε→0
1
ε

∫
Ω
δF
δµ (µ0) (dµε − dµ0) for any smooth {µε}ε∈R.

Then, δFδµ (µ0) is the first variation of F evaluated at µ0.

For functionals for which the first variation exists as in
the above definition, we can introduce the notion of Fréchet
derivative on the L2-Wasserstein space (P(Ω),W2):

Definition 4 (Derivative of a functional on (P(Ω),W2)).
A functional F : P(Ω) → R is Fréchet differentiable with
derivative ξ at an atomless measure µ0 ∈ P(Ω), if for
any smooth one-parameter family of probability measures
{µε}ε∈R, the following limit exists:

lim
ε→0

F (µε)− F (µ0)−
∫

Ω
〈ξ, Tµ0→µε − id〉 dµ

W2 (µ0, µε)
= 0,

where ξ = ∇ϕ, ϕ = δF
δµ̃ (µ0) and Tµ0→µε is the optimal

transport map from µ0 to µε.

We now introduce the notion of directional derivative of
a functional over probability measures. For this, let v =
1
t (Tµ→ν − id), which implies that ν = (id +tv)#µ. We have:

W2(µ, ν) =

√∫
Ω

|Tµ→ν − id|2 dµ = t

√∫
Ω

|v|2dµ,

and we get:

lim
t→0

F ((id +tv)#µ)− F (µ)− t
∫

Ω
〈ξ,v〉 dµ

t
√∫

Ω
|v|2dµ

= 0.

Therefore, the directional derivative of F along v is

d

dt

∣∣∣∣
v

F (µ) = lim
t→0

F ((id +tv)#µ)− F (µ)

t
=

∫
Ω

〈ξ,v〉 dµ,

where ξ is the Fréchet derivative of F evaluated at µ.

1) Lipschitz-continuous derivatives: We now introduce the
notion of l-smoothness that will be useful for the development
of gradient descent-based transport schemes in the paper.

Definition 5 (l-smoothness of functionals on (P(Ω),W2)).
A functional F : P(Ω) → R is called l-smooth (or Lipschitz
differentiable) if for any µ, ν ∈ P(Ω), we have:√∫

Ω

|ξµ − ξν |2 dν ≤ lW2(µ, ν),

where ξµ, ξν are the Fréchet derivatives of F evaluated at µ
and ν respectively.

From the above definition on l-smooth functionals, the
following lemma can be easily verfied:

Lemma 15 (l-smooth functionals). A functional F : P(Ω)→
R that is l-smooth on (P(Ω),W2) satisfies:

1)
∣∣F (ν)− F (µ)−

∫
Ω
〈ξµ, Tµ→ν − id〉 dµ

∣∣ ≤ l
2W

2
2 (µ, ν),

2)
∣∣∫

Ω
〈ξµ − ξν , Tν→µ − id〉 dν

∣∣ ≤ lW 2
2 (µ, ν),

for any two atomless probability measures µ, ν ∈ P(Ω), where
ξµ and ξν are the Fréchet derivatives of F evaluated at µ
and ν respectively.

D. Convexity of functionals on the Wasserstein space

Results in convex analysis can be appropriately general-
ized to functionals on the L2-Wasserstein space (P(Ω),W2),
see [31] for a detailed treatment. In this section, we introduce
and define notions related to the convexity of functionals
on (P(Ω),W2) used to build the results in this paper. Before
we can define any notion of convexity, we introduce an
appropriate notion of interpolation:

Definition 6 (Generalized displacement interpolation). Let
Ω be a compact subset of Rd, µ, ν ∈ P(Ω), and θ ∈ Pr(Ω)
be an atomless probability measure. Let Tθ→µ : Ω → Ω and
Tθ→ν : Ω→ Ω are optimal transport maps from θ to µ, and θ
to ν resp. in the L2-Wasserstein space over Ω. A (generalized)
displacement interpolant of µ and ν w.r.t. θ is given by γt =
((1− t)Tθ→µ + tTθ→ν)# θ, for t ∈ [0, 1].

It can be shown that for a compact and convex Ω ⊂ Rd, the
space of probability measures P(Ω) is geodesically convex
w.r.t. the notion of (generalized) displacement interpolation in
Definition 6.

Lemma 16 (Geodesic convexity of P(Ω)). Let Ω ⊆ Rd

be a compact, convex set. Then, the L2-Wasserstein space
(P(Ω),W2) is geodesically convex w.r.t. the notion of inter-
polations as in Definition 6.

Now, we introduce the following standard definition on the
(generalized) geodesic convexity of functionals on the L2-
Wasserstein space (P(Ω),W2):

Definition 7 (Generalized geodesic convexity). Let Ω ⊆ Rd

be a compact and convex set, and let µ, ν ∈ P(Ω) and θ ∈
P(Ω) be an atomless probability measure, for which there exist
Tθ→µ : Ω → Ω and Tθ→ν : Ω → Ω optimal transport maps
from θ to µ and from θ to ν respectively, in the L2-Wasserstein
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space over Ω. A functional F : P(Ω) → R is (generalized)
geodesically convex (resp. (generalized) strictly geodesically
convex) if the following holds for every t ∈ [0, 1]:

F (((1− t)Tθ→µ + tTθ→ν)# θ) ≤ (1− t)F (µ) + tF (ν).

(resp. the previous inequality holds with strict inequality).

Lemma 17 (First-order convexity condition). Let Ω ⊆ Rd be
compact and convex, µ, ν, θ ∈ P(Ω) be atomless probability
measures. Let F : P(Ω)→ R be a Fréchet differentiable and
(generalized) geodesically convex functional (in the sense of
Definition 7). Then, we have:

F (ν) ≥ F (µ) +

∫
Ω

〈ξµ, Tθ→ν − Tθ→µ〉 dθ, (24)

where ξµ is the Fréchet derivative of F at µ, and Tθ→µ : Ω→
Ω and Tθ→ν : Ω → Ω are optimal transport maps from θ to
µ and from θ to ν respectively.

We now define below the notion of strong geodesic convex-
ity of Fréchet-differentiable functionals on (P(Ω),W2):

Definition 8 (Strong geodesic convexity of a functional
on (P(Ω),W2)). Let Ω ⊆ Rd be compact and convex
and µ, ν, θ ∈ P(Ω) be atomless probability measures. Let
F : P(Ω) → R be a Frechét-differentiable functional. Let ξµ
and ξν be the Fréchet derivatives of F evaluated at measures µ
and ν, respectively. Then, F is strongly (geodesically) convex
if there exists an m > 0 such that:∫

Ω

〈ξν − ξµ, Tθ→ν − Tθ→µ〉 dθ ≥ mW 2
2 (µ, ν), (25)

where Tθ→µ : Ω → Ω and Tθ→ν : Ω → Ω are optimal
transport maps from θ to µ and from θ to ν respectively.

APPENDIX B
AGGREGATE OBJECTIVE FUNCTIONS

Proposition 3 (Strict geodesic convexity of Cf (·, µ∗)). Fix
µ∗ ∈ P(Ω) (absolutely continuous) as the reference measure
and let µ0, µ1 ∈ P(Ω). Let Tµ∗→µ0

and Tµ∗→µ1
be optimal

transport maps from µ∗ to µ0 and µ∗ to µ1 respectively,
corresponding to the optimal transport cost Cf , and let
Tt = (1−t)Tµ∗→µ0

+tTµ∗→µ1
for t ∈ [0, 1]. For µt = Tt#µ

∗,
we have:

Cf (µt, µ
∗) < (1− t)Cf (µ0, µ

∗) + tCf (µ0, µ
∗).

Proof. We have:

Cf (µt, µ
∗) ≤

∫
Ω

f(|Tt(x)− x|)dµ∗(x)

=

∫
Ω

f (|(1− t)Tµ∗→µ0
(x) + tTµ∗→µ1

(x)− x|) dµ∗(x)

=

∫
Ω

f (|(1− t) [Tµ∗→µ0(x)− x]

+t [Tµ∗→µ1
(x)− x]|) dµ∗(x)

≤
∫

Ω

f ((1− t) |Tµ∗→µ0
(x)− x|

+t |Tµ∗→µ1(x)− x|) dµ∗(x),

where the last inequality is a consequence of the fact that f is
non-decreasing. Further, if f is strictly convex in Ω, we have:

Cf (µt, µ
∗)

<

∫
Ω

[(1− t)f (|Tµ∗→µ0
(x)− x|)

+tf (|Tµ∗→µ1
(x)− x|)] dµ∗(x)

= (1− t)
∫

Ω

f (|Tµ∗→µ0(x)− x|) dµ∗(x)

+ t

∫
Ω

f (|Tµ∗→µ1
(x)− x|) dµ∗(x)

= (1− t)Cf (µ0, µ
∗) + tCf (µ0, µ

∗).

We now establish the following result:

Proposition 4 (l-smoothness of Cf (·, µ∗)). Let the Fréchet
derivative of the functional F (µ) = Cf (µ, µ∗) at µ ∈ Pr(Ω)
be denoted as ξµ. The functional F (µ) = Cf (µ, µ∗) satisfies:∣∣∣∣∫

Ω

〈ξµ1
− ξµ2

, Tµ2→µ1
− id〉 dµ2

∣∣∣∣ ≤ l ∫
Ω

|Tµ2→µ1
− id|2 dµ2,

where Tµ2→µ1
is the optimal transport map from µ2 to µ1

w.r.t. Cf .

Proof. Let φµ =
δCf (µ,µ∗)

δµ be the Kantorovich potential for
the optimal transport from µ to µ∗. We now have the following
relation [42]:

Tµ→µ∗ = id− (∇h)
−1

(∇φµ),

where the function h : Rd → R is such that h(v) = f(|v|). It
follows from the l-smoothness of f that the function h is also
l-smooth. From the above and l-smoothness of h, we get:∣∣∣∣∫

Ω

〈ξµ1 − ξµ2 , Tµ2→µ1 − id〉 dµ2

∣∣∣∣
=

∣∣∣∣∫
Ω

〈∇h (id−Tµ1→µ∗)−∇h (id−Tµ2→µ∗) , Tµ2→µ1 − id〉 dµ2

∣∣∣∣
≤
∫

Ω

|〈∇h (id−Tµ1→µ∗)−∇h (id−Tµ2→µ∗) , Tµ2→µ1 − id〉| dµ2

≤ l
∫

Ω

|Tµ2→µ1 − id|2 dµ2.
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