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Abstract

This work proposes a unifying probabilistic framework for the design of robustly
asymptotically stable moving-horizon estimators (MHE) for discrete-time nonlinear sys-
tems, and a mechanism to incorporate differential privacy in moving-horizon estimation.
We begin with an investigation of the classical notion of strong local observability of
nonlinear systems and its relationship to optimization-based state estimation. We then
present a general moving-horizon estimation framework for strongly locally observable
systems, as an iterative minimization scheme in the space of probability measures. This
framework allows for the minimization of the estimation cost with respect to different
metrics. In particular, we consider two variants, which we name W2-MHE and KL-MHE,
where the minimization scheme uses the 2-Wasserstein distance and the KL-divergence,
respectively. The W2-MHE yields a gradient-based estimator whereas the KL-MHE yields
a particle filter, for which we investigate asymptotic stability and robustness properties.
Stability results for these moving-horizon estimators are derived in the probabilistic set-
ting, against the backdrop of the classical notion of strong local observability which, to
the best of our knowledge, differentiates it from other previous works. We then propose
a mechanism to encode differential privacy of the measurements used by the estimator
via an entropy regularization of the MHE objective functional. In particular, we find suf-
ficient bounds on the regularization parameter to achieve the desired level of differential
privacy. Numerical simulations demonstrate the performance of these estimators.

1 Introduction

Moving-horizon estimation (MHE) is an optimization-based state estimation method that
uses the most recent measurements within a moving-time horizon to recursively update state
estimates. In principle, its optimization-based formulation enables it to handle nonlinearities
and state constraints much more effectively than other known methods. This, coupled with
the adoption of increasingly powerful, inexpensive computing platforms has brought new
impetus to the adoption of moving-horizon estimation in various data-driven applications.
In many cases, data is acquired from particular individuals or users, which introduces new
ethical concerns about data collection and manipulation, highlighting an increasing need for
data privacy. Such is the case in home monitoring and traffic estimation (with vehicle GPS
data) applications, to name a few. Motivated by this, here we design and analyze a new class
of moving-horizon estimation filters that can guarantee the differential-privacy of the data.
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The origins of MHE can be traced back to the limited memory optimal filters introduced
in [19]. Theoretical investigations on MHE have broadly been directed at their asymptotic
stability [2, 29, 33] and robustness [18, 20, 24] properties. These properties have primarily
been built upon underlying assumptions of input/output-to-state (IOSS) stability, which is
adopted as the notion of detectability, wherein the norm of the state is bounded given the
sequences of inputs and outputs. However, alternative foundations for the stability results
in other classical notions of observability, such as strong observability [25], have remained
unexplored. The connection between nonlinear observability theory and estimation problems
runs deep, see [22] and more recently [32], and it is worthwhile to explore this connection in
the context of optimization-based estimation methods such as moving-horizon estimation.

The problem of state estimation is fundamentally about dealing with uncertainty, man-
ifested as uncertainty in the initial conditions and/or in the evolution of the system in the
presence of unknown disturbances. This is appropriately formulated in the space of prob-
ability measures over the state space of the system. Recent advances in gradient flows in
the space of probability measures [5], [30], and the corresponding discrete-time movement-
minimizing schemes [28] present powerful theoretical tools that can be applied to recursive
optimization-based estimation methods such as moving-horizon estimation, and can serve as
a unifying framework for their design and analysis.

Another important consideration in the MHE problem is the cost of computation. The
problem formulation more commonly involves solving an optimization problem at every time
instant, with the state estimate and disturbances as decision variables in the optimization,
where the dimension of the problem scales with the size of the horizon. This approach, in
general, tends to be computationally intensive, which poses a hurdle for implementation in
real-time. This has motivated the search for fast MHE that implement one or more iterations
of the optimization at every time instant. Recently, in [3], [4], the authors develop such a
method for noiseless systems and provide theoretical guarantees on convergence. However,
these works assume the convexity of the cost function, which is restrictive for general non-
linear systems, and not well connected to notions of observability. None of these works has
considered the additional question of privacy.

Differential privacy [11] has emerged over the past decade as a benchmark in data privacy.
The typical setting assumes independence between the records in static databases; however,
basic existing mechanisms fail to provide guarantees when correlations exist between the
records in the database. This is the case when data is employed by a state estimation
process whose output is then released: there is a dynamic system from which a time series of
sensor measurements is obtained, and the measurement data and the released estimates are
correlated.

In [8,9], the authors generalize the definition of differential privacy to include general no-
tions of distance between datasets and design differentially private mechanisms for Bayesian
inference. In [23, 31], the authors investigate privacy-preserving mechanisms for the case
where correlations exist between database records. Privacy-preserving mechanisms for func-
tions and functional data were investigated in [15]. The work [27] studies the problem of
differentially-private state estimation, introducing the formal notion of differential privacy
into the framework of Kalman filter design for dynamic systems. The authors of [13] consider
the problem of optimal state estimation for linear discrete-time systems with measurements
corrupted by Laplacian noise. A finite-dimensional distributed convex optimization is consid-



ered in [26], where differential privacy is achieved by perturbation of the objective function.
We refer the reader to [7] for a broad overview of the systems and control-theoretic perspective
on differential privacy.

Contributions: The contributions of this work are two-fold: establishing the robust
asymptotic stability of the proposed moving-horizon estimator in a probabilitstic framework,
founded on the notion of strong local observability; and incorporating differential privacy in
moving-horizon estimation. We begin with the well-studied notion of strong local observabil-
ity of nonlinear, discrete-time systems and investigate its relationship to the optimization-
based state estimation problem. To handle uncertain initial conditions and the possible
non-uniqueness of solutions to the estimation problem, we adopt a generalized problem for-
mulation over the space of probability measures over the state space. More precisely, we define
the MHE as a proximal gradient descent in the space of probability measures, with a non-
convex, time-varying cost function. This probabilistic setting serves as a unifying framework
for moving-horizon estimation and allows us to develop different classes of moving-horizon
estimators by simply varying the metric used to define the proximal operator, and to obtain
implementable filters by Monte Carlo methods. We then consider the Wasserstein metric
and the KL-divergence, which yield the more familiar MHE and a particle filter, respec-
tively. Following this, we present an analysis of the convergence and robustness properties
of these estimators in the probabilistic setting, under assumptions of strong local observabil-
ity. Further, we modify the optimization problem (in the space of probability measures) by
an entropy regularization to derive conditions that guarantee a desired level of differential
privacy for these filters.

Paper organization: The rest of the paper is organized as follows. In Section 2, we in-
troduce the notation and mathematical preliminaries used in the paper. We present the
optimization-based state estimation problem in Section 4, where Section 4.1 deals with the
Full Information Estimation (FIE) problem and the Moving-horizon Estimation (MHE) prob-
lem is introduced in Section 4.2. We present the MHE method based on proximal gradient
descent with the Wasserstein metric in Section 5, and with the KL-divergence in Section 6.
In Section 7, we address the differential privacy considerations for the moving-horizon esti-
mators designed. The results from numerical experiments are presented in Section 8, with
the conclusions in Section 9.

2 Notation and preliminaries

In this section, we introduce the notation and mathematical preliminaries relevant to this
paper.

Let ‖·‖ : Rd → R≥0 denote the Euclidean norm on Rd and |·| : R→ R≥0 the absolute value

function. We denote by ∇ =
(

∂
∂x1

, . . . ∂
∂xn

)
the gradient operator in Rd. For any x ∈ X ⊂ Rd,

we let µ ∈ P(X ) be an absolutely continuous probability measure on X ⊂ Rd. We denote
by ρ the corresponding density function, where dµ = ρdvol, with vol being the Lebesgue
measure. For M ⊆ X , let the distance d(x,M) of a point x ∈ X to the set M be given
by d(x,M) = infy∈M ‖x−y‖. We denote by 〈p, q〉 the inner product of functions p, q : X → R
with respect to the Lebesgue measure vol, given by 〈p, q〉 =

∫
X pq dvol. Let F : P(X ) → R

be a smooth real-valued function on the space of probability measures on X ⊂ Rd. We
denote by δF

δµ (x) the derivative of F with respect to µ, see [12], such that a perturbation δµ



of the measure results in a perturbation δF =
∫
X
δF
δµ d(δµ). Given a map T : X → Y

and a measure µ ∈ P(X ), in the space of probability measures P(X ), we let ν = T#µ
denote the pushforward measure of µ by T , where for a measurable set B ⊂ T (X ), we
have ν(B) = T#µ(B) = µ(T −1(B)). Moreover, we denote by Eµ the expectation operator
w.r.t. the measure µ.

We now introduce the notion of l-smoothness that underlies the results on convergence
of gradient descent methods.

Definition 1. (l-smoothness). A function p : X → R is called l-smooth (or Lipschitz
differentiable) if for any x, y ∈ X , we have |∇p(y)−∇p(x)| ≤ l‖y − x‖.

The following lemma [6] can be easily verified for l-smooth functions:

Lemma 1. (l-smooth functions). For an l-smooth function p : X → R and any x, y ∈ X ,
we have |p(y)− p(x)− 〈∇p(x), y − x〉| ≤ l

2‖y − x‖
2. •

We now define the proximal operator on X with respect to a function F : X → R, as
follows:

proxF (x) = arg min
x̃∈X

1

2
‖x̃− x‖2 + F (x̃).

The notion of observability used in this paper is intricately related to solutions of inverse
problems, with an associated notion of well-posedness that is introduced below:

Definition 2. (Well posedness [21]). Let X and Y be normed spaces, and P : X → Y a
mapping. The equation P (x) = y is called well-posed if:

1. Existence: For every y ∈ Y, there is (at least one) x ∈ X such that P (x) = y.

2. Uniqueness: For every y ∈ Y, there is at most x ∈ X such that P (x) = y.

3. Stability: The solution x depends continuously on y, that is, for any sequence {xi} ⊂ X
such that P (xi)→ P (x), it follows that xi → x.

We now introduce the notion of lower semicontinuity of set-valued maps, which underlies
some of the results on optimization-based state estimation in this paper.

Definition 3. (Lower semicontinuity of set-valued maps). A point-to-set mapping H :
Z ⊂ R ⇒ Rd is lower semicontinuous at a point α ∈ Z if for any x ∈ H(α) and sequences
{αi} ⊆ Z, {xi} ⊆ Rd with {αi} → α, {xi} → x such that xi ∈ H(αi) for all i, it holds
that x ∈ H(α). If H is lower semicontinuous at every α ∈ Z, then H is said to be lower
semicontinuous on Z.

We now define some notions of distance in the space of probability measures. Let µ1, µ2 ∈
P(X ) be two absolutely continuous probability measures on X , with ρ1, ρ2 being the corre-
sponding density functions. Also, let Π(µ1, µ2) ⊂ P(X ×X ) be the space of joint probability
measures that have µ1 and µ2 as their marginals. The 2-Wasserstein distance W2(µ1, µ2)
between µ1 and µ2 is given by:

W 2
2 (µ1, µ2) = inf

π∈Π(µ1,µ2)

∫
X×X

‖x− y‖2 dπ(x, y).



In what follows, we let
δW 2

2 (µ1,µ2)
δµ1

= φ1, where φ1 is the so-called the Kantorovich poten-
tial [30] associated with the transport from µ1 to µ2.

The KL-divergence from µ1 to µ2 is given by:

DKL(µ1||µ2) =

∫
X

log

(
dµ1(x)

dµ2(x)

)
dµ1(x) =

∫
X
ρ1(x) log

(
ρ1(x)

ρ2(x)

)
dvol(x).

The max-divergence between µ1 and µ2 is defined as:

Dmax(µ1, µ2) = sup
x∈X

∣∣∣∣log

(
ρ1(x)

ρ2(x)

)∣∣∣∣ .
We refer the reader to [14] for a detailed overview of the relations between the various

metrics and divergences in probability spaces.
We define an estimator E : Y → P(X ) as a function that accepts as input data y from

the metric space Y and releases as output E [y], a probability measure over the space X .

Definition 4. (Differential privacy). Given δ, an estimator E is ε-differentially private
if for any two δ-adjacent measurements y1, y2 ∈ Y (that is dY(y1, y2) ≤ δ), and any measur-
able A ⊆ X , we have E [y1](A) ≤ eεE [y2](A).

Note that the condition dY(ym1 , y
m
2 ) ≤ δ is a generalization of the notion of adjacency

to arbitrary metric spaces that we adopt in this paper. We now have the following lemma
on the connection between the notions of differential privacy and max-divergence introduced
above:

Lemma 2. (Differential privacy and max-divergence). An estimator E is ε-
differentially private iif Dmax(E [y1], E [y2]) ≤ ε for any y1, y2 ∈ Y with dY(y1, y2) ≤ δ.

Proof. Clearly, if for any y1, y2 ∈ Y with dY(y1, y2) ≤ δ we have Dmax(E [y1], E [y2]) ≤ ε, then:

ε ≥ Dmax(E [y1], E [y2]) = sup
x∈X

∣∣∣∣log

(
ρ1(x)

ρ2(x)

)∣∣∣∣ ≥ ∣∣∣∣log

(
ρ1(x)

ρ2(x)

)∣∣∣∣ .
This implies that for any x ∈ X , we have ρ1(x) ≤ eερ2(x). Now, for any A ⊆ X , we
have E [ym1 ](A) =

∫
A ρ1(x) dvol ≤

∫
A e

ερ2(x) dvol = eε
∫
A ρ2(x) dvol = eεE [ym2 ](A), which

implies that E is ε-differentially private. The forward implication can be easily verified.

Thus, ε-differential privacy essentially imposes an upper bound on the sensitivity of the
estimate generated by E (in the sense of the max-divergence Dmax), to the measurement.

3 Observability notions

In this paper, we consider systems of the form:

Ω :

{
xk+1 = f(xk, wk),

yk = h(xk) + vk,
(1)

where f : X×W→ X and h : X→ Y, wk ∈ W is the process noise, vk ∈ V is the measurement
noise at time instant k, and X ⊂ RdX , Y ⊂ RdY , W ⊂ RdW , and V ⊂ RdV .



Assumption 1. (Lipschitz continuity). The functions f and h are Lipschitz continuous,

with ‖f(x1, w1)−f(x2, w2)‖ ≤ c(1)
f ‖x1−x2‖+c(2)

f ‖w1−w2‖ and ‖h(x1)−h(x2)‖ ≤ ch‖x1−x2‖.

Assumption 2. (Noise characteristics). The noise sequences {wk}k∈N and {vk}k∈N are
i.i.d samples from distributions ω and ν (with supports in W and V). The sets W and V are
bounded, with |wk| ≤W and |vk| ≤ V . Moreover, we assume that Eω[wk] = 0 and Eν [vk] = 0.

We also introduce the following autonomous system corresponding to (1):

Σ :

{
xk+1 = f(xk, 0) = f0(xk),

yk = h(xk).
(2)

With a slight abuse of notation, for any x ∈ X, we let ΣT (x) =(
h(x), h ◦ f0(x), . . . , h ◦ fT0 (x)

)
, the sequence of outputs over a horizon of length T + 1 for

the system (2) from the state x ∈ X. Similarly, for the system (1), we let Ω(x,wi:j) =
(h(x), h ◦ f(x,wi), . . . , h ◦ f(. . . f(f(x,wi), wi+1), . . . , wj), for some sequence of process noise
samples {wk}, where wi:j = (wi, . . . , wj).

The theoretical results in the moving-horizon estimation literature have largely been de-
rived in the setting of input/output-to-state (IOSS) stability, as in [18,20,29] to name a few,
which is a notion of norm-observability, see [17], wherein the norm of the state is bounded
using the sequences of inputs and outputs. However, there are other classical notions of
observability based on the notion of distinguishability, which generalize the approach taken
to linear systems. For a detailed treatment, we refer the reader to [25] and [1]. In this pa-
per, we explore the connection between the classical notion of strong local observability and
moving-horizon estimation.

We now introduce the notion of strong local observability used in this paper:

Definition 5. (Strong local observability). The system Σ defined in (2) is called strongly
locally observable if there exists a T0 ∈ N such that for any given x ∈ X and T ≥ T0, we have
that ΣT

−1 ◦ ΣT (x) is a set of isolated points. Moreover, for all x ∈ X and T1, T2 ≥ T0, we
have that ΣT1

−1 ◦ ΣT1(x) = ΣT2
−1 ◦ ΣT2(x). We call T0 the minimum horizon length of Σ.

The above definition is equivalent to the definitions contained in [1, 25], which has been
restated it in a manner suitable for the optimization-based estimation framework considered
here. As seen from the above definition, strong observability is based on a distinguishability
notion, and when it holds globally (i.e., ΣT

−1 ◦ΣT = id for all T ≥ T0) it is equivalent to the
notion of uniform observability, as established in [16].

For systems with process noise, of the form Ω in (1), we introduce the notion of almost
sure strong local observability.

Definition 6. (Almost sure strong local observability). The system Ω defined in (1)
is called almost surely strongly locally observable if there exists a Tw ∈ N such that, given a
process noise sequence w0:T−1 ∈ WT , for T ≥ Tw, any y0:T = Ωw0:T−1(x) ∈ YT+1, and T ≥
Tw, we have that Ω−1

w0:T−1
(y0:T ) is a set of isolated points almost surely. More precisely, the

set of noise sequences w0:T−1 for which Ω−1
w0:T−1

(y0:T ) is not a set of isolated points, is of
measure zero. Moreover, we call Tw the minimum horizon length of Ω.



We now present a fundamental result that characterizes strong local observability via a
rank condition.

Lemma 3. (Observability rank condition [25]). The system Σ is locally strongly observ-
able with minimum horizon length T0 if and only if Rank(∇ΣT (x)) = dim(X) for all T ≥ T0

and x ∈ X. The system Ω is almost surely locally strongly observable with minimum hori-
zon length Tw if and only if Rank(∇Ωw0:T−1(x)) = dim(X) almost surely for all T ≥ Tw

and x ∈ X. •

We now present an example to illustrate these concepts.

Example 1. Consider a system with the state space X = (0,∞), with xk+1 = f0(xk) and
yk = h(xk), such that:

f0(x) =


3x, for x ∈ (0, aπ − ε],
γ(x) for x ∈ (aπ − ε, aπ + ε],

2x+ aπ, for x ∈ (aπ + ε,∞),

for some a ∈ N, ε small and a smooth function γ such that γ(aπ− ε) = 3(aπ− ε) and γ(aπ+
ε) = 2(aπ+ε)+aπ. Moreover, let the output h(x) = sinx. We note that ∇h(x) = cosx which
implies that ∇h((2m+ 1)π/2) = 0 for all m ∈ N. Applying Lemma 3 for this system, we can
infer that for a = 2, we get that the minimum horizon length T0 = 3. This is because the
system becomes strongly locally observable at x = π/2 only over a horizon of length T0 = 3,
that is ∇Σk(π/2) = 0k+1 for k ∈ {0, 1, 2}. This is a case of a one-dimensional system which
is strongly locally observable with a minimum horizon of length T0 = 3. With larger values
of a, the minimum horizon length is further increased. •

We make the following assumption in the rest of the paper:

Assumption 3. (Strong local observability).

1. The system Σ in (2) is strongly locally observable with minimum horizon length T0.

2. The system Ω in (1) is almost surely strongly locally observable with minimum horizon
length Tw.

4 Optimization-based state estimation

We now begin by addressing the state estimation problem for the autonomous system Σ, and
develop a recursive moving-horizon estimator for it.

4.1 Full-Information Estimation (FIE)

Let {yk}k∈{0}∪N be a sequence of measurements generated by the system Σ. Let {0, . . . , T}
be a time horizon such that T ≥ T0, the minimum horizon length of the system Σ, and
denote y0:T = (y0, . . . , yT ). The problem of estimation essentially aims at characteriz-
ing ΣT

−1(y0:T ), which is an inverse problem, and optimal estimation formulates this problem



as an optimization. Assumptions 1, and 3, on Lipschitz continuity and strong local observ-
ability, respectively, ensure that the inverse problem is locally well-posed as in Definition 2.

To formulate the inverse problem as an optimization, consider a convex func-
tion JT (y0:T , ·) : YT+1 → R≥0 such that JT (y0:T , ξ) = 0 if and only if ξ = y0:T . Moreover, we
let limT→∞ JT (y0:T ,ΣT (x)) =∞ if x /∈ ΣT

−1(y0:T ) for T ≥ T0. Now, the problem of interest
becomes:

x0 ∈ arg min
x∈X

JT (y0:T ,ΣT (x)). (3)

In the above, y0:T is the data in the estimation problem, which is given. Since the ob-
jective is to solve the original inverse problem, and we would like to use gradient descent-
based methods, we would like for every local minimizer of JT (y0:T ,ΣT (x)) to belong to the
set ΣT

−1(y0:T ), or, in other words, that every local minimizer is also global. We therefore
make the following additional assumption on the system Σ and the choice of JT . For a
conciseness of notation, in the following assumption and lemma, we let JT (·) = JT (y0:T , ·),
suppressing the data y0:T in the notation where useful, and is understood from context.

Assumption 4. (Lower semicontinuity of sublevel sets). We assume that, for
all T ≥ T0, the convex function JT : YT+1 → R is such that the set-valued map SX(α) =

ΣT
−1
(
SJTYT+1(α) ∩ ΣT (X)

)
is lower semicontinuous, where SJTYT+1(α) = {ξ ∈ YT+1|JT (ξ) ≤

α}.

The above assumption ensures that the function JT (y0:T ,ΣT (·)) satisfies the condition
for the local minimizers to be global (Theorem 1 from [34]). The following lemma provides
a sufficient condition for it to hold.

Lemma 4. (Second-order sufficient condition for lower semicontinuity). Assump-
tion 4 holds if for any x ∈ X such that ∇ (JT (y0:T ,ΣT (x))) = 0 we have JT (y0:T ,ΣT (x)) = 0,
or the following condition holds when JT (y0:T ,ΣT (x)) 6= 0 for any v ∈ RdX , v 6= 0:

〈
∇2ΣT [v, v](x),∇JT

∣∣∣∣
ΣT (x)

〉
‖∇ΣT [v]‖2

≤ −λmax

(
Hess JT

∣∣∣∣
ΣT (x)

)
,

where Hess JT is the Hessian of JT . •

The final inequality in Lemma 4 merely states that those critical points at which the cost
function does not reach the global minimum value are local maximizers.

We are now ready to present the following theorem that establishes the equivalence be-
tween the inverse problem of characterizing the set ΣT

−1(y0:T ) and the optimization (3).

Theorem 1. (Inverse as minimizer). For a convex JT (y0:T , ·) : YT+1 → R≥0 such
that JT (y0:T , ξ) = 0 if and only if ξ = y0:T for any y0:T ∈ YT+1, under Assumptions 3
and 4, and any T ≥ T0, it holds that z ∈ ΣT

−1(y0:T ) if and only if z is a minimizer of
JT (y0:T ,ΣT (·)).



Proof. If z ∈ ΣT
−1(y0,T ), we have that h ◦ fk0 (z) = yk for all k ∈ {0, . . . , T}. It now follows

that JT (y0:T ,ΣT (z)) = 0. Since, JT (y0:T ,ΣT (z)) ≥ 0 by definition, we infer that z is a global
minimizer of JT (y0:T ,ΣT (·)).

Suppose that z is a local minimizer of JT (y0:T ,ΣT (·)). By Assumption 4 and Theo-
rem 1 in [34], we get that the local minima of JT (y0:T ,ΣT (·)) are also global, which implies
that JT (y0:T ,ΣT (z)) = 0, and therefore ΣT (z) = y0:T .

Theorem 1 suggests that the state estimates for the system Σ can be obtained by minimiz-
ing JT (y0:T ,ΣT (·)) over a horizon of length T ≥ T0. This is also called the full information
estimation (FIE) problem in the optimal state estimation literature [18,29], as it works with
the entire sequence of output measurements over the horizon {0, . . . , T}.

Now, from Assumption 3 and Theorem 1, we have that ΣT
−1(y0:T ) is a set of isolated

points which are minimizers of JT (y0:T ,ΣT (·)). It then follows that ΣT
−1(y0:T ) is the set of

stable fixed points of the negative gradient vector field of JT (y0:T ,ΣT (·)). We let C0 be the
basin of attraction of this set. Moreover, we note that fk(ΣT

−1(y0:T )) is the set of stable
fixed points of the negative gradient vector field of JT

(
yk:k+T , f

k ◦ ΣT (·)
)
, and we let Ck be

the basin of attraction of ΣT
−1(yk:k+T ). We have used above the fact that ΣT

−1(yk:k+T ) =
fk0 (ΣT

−1(y0:T )), which follows from the definition of strong local observability.
We now lift the FIE problem (3) to the space of probability measures over X, as a mini-

mization in expectation of the estimation objective function:

µ0 ∈ arg min
µ∈P(X)

Eµ [JT (y0:T ,ΣT (·))] . (4)

The above formulation allows us to capture information about the (probably many) optimal
estimates through a probability measure µ0, and help encode distributional constraints, which
will be considered in a forthcoming publication.

In the following, we develop recursive moving-horizon estimators that generate se-
quences {µk}k∈N of probability measures in P(X) as estimates. We then obtain practically
implementable estimators using Monte Carlo methods to sample from the measures µk.

4.2 Moving-Horizon Estimation (MHE)

In the previous section, we presented a formulation of the full information estimation (FIE)
problem for the autonomous system Σ, which uses the entire measurement sequence over a
horizon of length T ≥ T0. However, the minimum horizon length T0 may be large, which
would make the estimation computationally intensive. Moreover, we would like to progres-
sively assimilate the incoming measurements online. We therefore adopt a moving-horizon
estimation method which, at any time instant k+N , uses the output measurements from the
horizon {k+1, . . . , k+N} (of length N < T0), and the state estimate at the time instant k−1,
to obtain the state estimate at instant k, recursively.

We let GNk (z) = JN−1 (yk+1:k+N ,ΣN (z)) be the objective function over the horizon {k +
1, . . . , k +N}, at the time instant k +N , where yk+1:k+N = (yk+1, . . . , yk+N ).

Assumption 5. (Moving-horizon cost). We make the following assumptions on the cost
function GNk :

1. the cost GNk is l-smooth,



2. it holds that |GNk+1(f0(z))−GNk (z)| ≤ L‖∇GNk (z)‖2,

3. the previous constants are such that lL ≤ 1
2 ,

4. for any two δ-adjacent measurements y, ỹ ∈ YT+1, such that ‖y − ỹ‖ ≤ δ and with
corresponding costs GNk and G̃Nk , for k ∈ {0, . . . , T} and N ≤ T −k, we have ‖∇(GNk −
G̃Nk )(x)‖ ≤ lδ for all x ∈ X.

We now formulate the general moving-horizon estimation method as follows:

µk ∈ arg min
µ∈P(X)

D(µ, f0#µk−1) + ηEµ
[
GNk
]
,

given µ0 ∈ P(X),
(5)

where D : P(X) × P(X) → R≥0 is a placeholder for a metric, divergence or transport cost
on P(X). We obtain implementable observers from the above formulation by sampling from
the measures, by Monte Carlo methods. As discussed in the ensuing sections, using the 2-
Wasserstein distance W2 yields the more familiar MHE formulation, whereas with the KL-
divergence we obtain a moving-horizon particle filter. Hence, this formulation is proposed as
a unifying probabilistic framework for moving-horizon estimation, where different estimators
are generated by different choices of D.

We now introduce the following asymptotic stability notion for estimators that will be
used in investigating the properties of the estimators we design.

Definition 7. (Asymptotic stability of state estimator). We call an estimator of
the form (5) an asymptotically stable observer for the system Σ if the sequence of esti-
mates {µk}k∈N is such that limk→∞ µk(ΣT

−1(yk:k+T )) = 1 for T ≥ T0.

5 A W2-Moving-Horizon Estimator

In this section, we derive a moving-horizon estimator, which we refer to as the W2-MHE,
to generate a sequence of probability distributions {µk}k∈N. This is based on the one-step
minimization scheme of [30] in P(X) w.r.t. the Wasserstein metric W2, which we extend to
the moving-horizon setting. For every k > 0, consider:

µk ∈ arg min
µ∈P(X)

1

2
W 2

2 (µ, f0#µk−1) + ηEµ
[
GNk
]
,

given µ0 ∈ P(X).

(6)

We let Kk be the support of µk, with K0 ⊆ C0, where C0 is as defined earlier in Section 4.1.

5.1 Sample update scheme for W2-MHE

We now derive a sample update scheme for W2-MHE, which also yields an implementable
filter for the W2-MHE formulation.



We note that any local minimizer µk of (6) is a critical point of the objective functional
and therefore, it satisfies:

c =
δ

δµ

[(
1

2
W 2

2 (µ, f0#µk−1) + ηEµ
[
GNk
])] ∣∣∣∣

µ=µk

= φk + ηGNk ,

where φk is the Kantorovich potential [30] associated with the transport from µk to f0#µk−1,
and c is a constant (from the constraint

∫
X dµ(x) = 1, for µ ∈ P(X), due to which the first

variation is defined up to an additive constant). From the above equation, we now obtain:

∇φk(x) + η∇GNk (x) = 0.

The gradient of the Kantorovich potential φk defines the deterministic optimal transport
map Tk (note that this notation is not to be confused with that of the time horizon T ) w.r.t.
the W2-distance from µk to f0#µk−1, which determines ∇φk(x) = x − T−1

k (x) (where µk =
Tk#f0#µk−1). We therefore get:

x = T−1
k (x)− η∇GNk (x). (7)

The above equation allows us to design an implementable filter for the W2-MHE (6). We
let zk ∼ µk, that is, zk ∈ Kk is sampled from the distribution µk. From (7), it holds
that zk = T−1

k (zk) − η∇GNk (zk). Since (T−1
k )#µk = f0#µk−1, we let T−1

k (zk) = f0(zk−1), a
sample of the distribution f0#µk−1, and we obtain the following recursive estimator:

zk = f0(zk−1)− η∇GNk (zk), k > 0. (8)

We now note that the estimate zk in (8) corresponds to a critical point of the following
minimizing movement scheme:

zk ∈ arg min
z

1

2
‖z − f0(zk−1)‖2 + ηGNk (z), k > 0,

z0 ∼ µ0 ∈ P(X).
(9)

Lemma 5. (Strong convexity). For η < l−1, the objective function in (9) is strongly
convex, and therefore proxηGN

k
(f0(x)) is a singleton for any x ∈ X.

Proof. Let Θ(z) = 1
2 ‖z − f0(z̃)‖2 + ηGNk (z). We have that ∇Θ(z1) − ∇Θ(z2) = z1 − z2 +

η
(
∇GNk (z1)−∇GNk (z2)

)
. It now follows that 〈∇Θ(z1)−∇Θ(z2), z1 − z2〉 = ‖z1 − z2‖2 +

η
〈
∇GNk (z1)−∇GNk (z2), z1 − z2

〉
. From Assumption 5-(1), on the moving-horizon cost, we

now get that 〈∇Θ(z1)−∇Θ(z2), z1 − z2〉 ≥ (1 − ηl)‖z1 − z2‖2, and since ηl < 1, we infer
that Θ is strongly convex, and therefore has a unique minimizer. Thus, proxηGN

k
(f0(z̃)) =

arg minz Θ(z) is a singleton.

We note that the minimization (9) defines a proximal mapping w.r.t. the Euclidean
metric, which we represent in a compact form using the proximal operator as:

zk = proxηGN
k

(f0(zk−1)), k > 0,

z0 ∼ µ0 ∈ P(X),
(10)

where supp(µ0) = K0 ⊆ C0.



5.2 Asymptotic stability of W2-MHE

We present the asymptotic stability result for W2-MHE in this section, before which we intro-
duce the following assumption on positive invariance of the discrete-time dynamics defined
by the map proxηGN

k
◦ f .

Assumption 6. (Positive invariance). We assume that there exists α > (1 −√
1− 2lL)l−1 such that for all η ∈ (0, α), we have proxηGN

k
(f(Ck−1)) ⊆ Ck.

The above assumption ensures that under the discrete-time dynamics defined by the
map proxηGN

k
◦ f , any sequence starting in the basin of attraction C0 of ΣT

−1(y0:T ) remains

within the basins of attraction Ck of ΣT
−1(yk:k+T ) at the subsequent instants of time k ∈ N.

We are now ready to present the asymptotic stability result for W2-MHE:

Theorem 2. (Asymptotic stability of W2-MHE). The estimator (6), under Assump-

tions 3 to 6, with a constant step size η ∈
(

1−
√

1− 2lL

l
,min

{
α,

1

l

})
, is an asymptotically

stable observer for the system Σ.

Proof. By Assumption 5-(1), on the moving-horizon cost, and Lemma 1, we have:

|GNk (f0(zk−1))−GNk (zk)− 〈∇GNk (zk), f0(zk−1)− zk〉| ≤
l

2
‖f0(zk−1)− zk‖2.

Substituting from (8) into the above, we get:

|GNk (f0(zk−1))−GNk (zk)− η‖∇GNk (zk)‖2| ≤ η2 l

2
‖∇GNk (zk)‖2.

It now follows that:

GNk (zk) ≤ GNk (f0(zk−1))− η
(

1− l

2
η

)
‖∇GNk (zk)‖2.

From Assumption 5-(2), on the moving-horizon cost, we have:

GNk (zk) ≤ GNk−1(zk−1) + L‖∇GNk−1(zk−1)‖2 − η
(

1− l

2
η

)
‖∇GNk (zk)‖2.

Summing the above inequality from k = 1 to K, we get:

η

(
1− l

2
η

) K∑
k=1

‖∇GNk (zk)‖2 − L
K∑
k=1

‖∇GNk−1(zk−1)‖2 ≤ GN0 (z0)−GNK(zK).

From here, we obtain:[
η

(
1− l

2
η

)
− L

] K∑
k=1

‖∇GNk (zk)‖2 ≤ GN0 (z0)−GNK(zK) + L‖∇GN0 (z0)‖2

≤ GN0 (z0) + L‖∇GN0 (z0)‖2.



Since η ∈
(

1−
√

1− 2lL

l
,
1

l

)
, we have that η

(
1− l

2η
)
− L > 0 and therefore, taking lim-

its in the previous inequality, we deduce that the series is summable. The latter implies
that limk→∞∇GNk (zk) = 0, and from (8), we have that limk→∞ ‖zk − f(zk−1)‖ = 0.

It now follows, by definition, from the above that limk→∞∇GT+1
k (zk) =

limk→∞∇ (JT (yk:k+T ,ΣT (zk))) = 0, over a horizon of length T + 1 (with T ≥ T0).
We now have that the initial condition z0 ∈ K0 ⊆ C0 and Assumption 6 en-
sure that zk ∈ Ck, the basin of attraction of fk

(
ΣT
−1(y0:T )

)
and from the fact

that limk→∞∇ (JT (yk:k+T ,ΣT (zk))) = 0, we infer that {zk} converges to the local min-
ima of JT (yk:k+T ,ΣT (·)). By Theorem 1, it now follows that {zk} converges to the
set Σ −1

T (yk:k+T ). Therefore limk→∞ d(zk,ΣT
−1(yk:k+T )) = 0.

Moreover, since limk→∞ d(zk,ΣT
−1(yk:k+T )) = 0 for all z0 ∈ K0, it follows

that limk→∞Kk = ΣT
−1(yk:k+T ). We know that supp(µk) = Kk, and therefore we get

that limk→∞ µk
(
ΣT
−1(yk:k+T )

)
= 1.

5.3 Robustness of W2-MHE

We now characterize the performance of the estimator (6) on the system Ω in (1). Since
the true process and measurement noise sequences remain unknown, we are interested in the
robustness properties of the estimator (11), in the form of an upper bound by the norms of
the disturbance sequences on the estimation error.

We begin by constructing a reference estimator that recursively generates the estimate
sequence, given the true disturbance sequences {wk}k∈N and {vk}k∈N, as follows:

µ̄k ∈ arg min
µ∈P(X)

1

2
W 2

2 (µ, f0#µ̄k−1) + ηEµ
[
ḠNk
]
,

given µ̄0 ∈ P(X).

(11)

where, we employ for conciseness w ≡ wk:k+N−1 = (wk, . . . , wk+N−1)
and v ≡ vk+1:k+N = (vk+1, . . . , vk+N ), so that ḠNk (z) ≡ ḠNk (z,w,v) =
JN−1

(
yk+1:k+N ,Ωwk:k+N−1

(z) + vk+1:k+N

)
. Note that GNk = ḠNk

∣∣
w=0,v=0

. We let K̄k
be the support of µ̄k, with K̄0 ⊆ C̄0, where the definition of C̄k is similar to that of Ck but
taking the noise {wk} and {vk} into account.

Assumption 7. (l-Smoothness w.r.t. disturbances). We assume that ‖∇GNk (z) −
∇ḠNk (z)‖ ≤ lw‖(wk:k+N−1,vk+1:k+N )‖ for all z ∈ X.

Following the proof of Theorem 2, under the same set of underlying assumptions, we infer
that the reference estimator (11) is almost surely an asymptotically stable observer for the
system Ω, given a particular realization of the disturbances {wk}k∈N and {vk}k∈N.

We now present the following theorem on the robustness of the estimator (6), characterized
by a bound on the error in the estimates generated by (6) with respect to the estimates
generated by the reference estimator (11):

Theorem 3. (Robustness of W2-MHE). Under Assumptions 1, 3, 5, and 7, given the
estimate sequences {µk}k∈N generated by (6) and {µ̄k}k∈N generated by the reference estima-

tor (11), with µ0 = µ̄0, we have W2(µk, µ̄k) ≤
c
(2)
f

c
(1)
f

WCk + ηlw
√
N

c
(1)
f

(W + V )Ck, for all k ∈ N,

where Ck =
∑k

`=1(
c
(1)
f

1−ηl )
`.



Proof. The estimator (11) yields the following reference recursive scheme:

z̄k = f(z̄k−1, wk−1)− η∇ḠNk (z̄k), (12)

where the above is derived similarly to the noiseless case. Let {zk}k∈N and {z̄k}k∈N be the
estimate sequences generated by (8) and (12) respectively, with z0 = z̄0, for which we have:

‖zk − z̄k‖ = ‖f0(zk−1)− f(z̄k−1, wk−1)− η∇GNk (zk) + η∇ḠNk (z̄k)‖
= ‖f0(zk−1)− f0(z̄k−1) + f0(z̄k−1)− f(z̄k−1, wk−1)

− η∇GNk (zk) + η∇GNk (z̄k)− η∇GNk (z̄k) + η∇ḠNk (z̄k)‖

≤ c(1)
f ‖zk−1 − z̄k−1‖+ c

(2)
f ‖wk−1‖+ ηl‖zk − z̄k‖

+ lwη‖(wk:k+N−1,vk+1:k+N )‖,

where the final inequality follows from Assumptions 1, 5, and 7, on the several Lipschitz
properties of f the gradient of GNk , and ḠNk , respectively. Further, since ηl < 1, we obtain
from the above that:

‖zk − z̄k‖ ≤
(

1

1− ηl

)(
c

(1)
f ‖zk−1 − z̄k−1‖+ c

(2)
f ‖wk−1‖

+ηlw‖(wk:k+N−1,vk+1:k+N )‖)

≤

 c
(1)
f

1− ηl

k

‖z0 − z̄0‖+
c

(2)
f

c
(1)
f

k∑
`=1

 c
(1)
f

1− ηl

`

‖wk−`‖

+
ηlw

c
(1)
f

k∑
`=1

 c
(1)
f

1− ηl

`

‖(wk−`+1:k−`+N ,vk−`+2:k−`+N+1)‖

≤
c

(2)
f

c
(1)
f

WCk +
ηlw
√
N

c
(1)
f

(W + V )Ck.

We note that if
c
(1)
f

1−ηl < 1, we have that limk→∞Ck =
c
(1)
f

1−ηl−c(1)f

is finite, and therefore, ‖zk−z̄k‖

is bounded as k → ∞. We note here that even when z0 6= z̄0, the effect of this initial
discrepancy vanishes as k →∞.

Now, let Tk : Kk → K̄k be a map such that for sequences {zk} and {z̄k} generated by (8)
and (12) respectively, with z0 = z̄0, we have Tk(zk) = z̄k. It then follows that Tk#µk = µ̄k.
Now, from the above, and by definition of the 2-Wasserstein distance, we have:

W2(µk, µ̄k) ≤
(∫

z∈Kk

‖z − Tk(z)‖2dµk(z)
) 1

2

≤

∫
z∈Kk

∣∣∣∣∣∣c
(2)
f

c
(1)
f

WCk +
ηlw
√
N

c
(1)
f

(W + V )Ck

∣∣∣∣∣∣
2

dµk(z)


1
2

≤
c

(2)
f

c
(1)
f

WCk +
ηlw
√
N

c
(1)
f

(W + V )Ck.



6 A KL-Moving-Horizon Estimator

In this section, we derive a moving-horizon estimator, which we refer to as KL-MHE, to
generate a sequence of probability distributions {µk}k∈N. Using the KL-divergence DKL as
the choice of divergence in the moving-horizon formulation (5), we obtain:

µk ∈ arg min
µ∈P(X)

DKL(µ‖f0#µk−1) + ηEµ
[
GNk
]
,

given µ0 ∈ P(X).
(13)

We note that any local minimizer µk of (13) is a critical point of the objective functional,
and, therefore, it satisfies:

c =
δ

δµ

[
DKL(µ‖f0#µk−1) + ηEµ

[
GNk
]] ∣∣∣∣

µ=µk

,

where c is a constant (from the constraint
∫

X dµ(x) = 1, for µ ∈ P(X), due to which the first
variation is defined up to an additive constant). From the above, we get:

c = log

(
ρk

f0#ρk−1

)
(x) + ηGNk (x),

where for any ` ∈ {0, 1, . . .}, ρ` is the density function corresponding to the measure µ`.
Therefore, the corresponding recursive update scheme for the density function is given by:

ρk(x) = ck (f0#ρk−1(x)) exp
(
−ηGNk (x)

)
, (14)

where ck is the normalization constant. We note that the above is a particle filter formulation,
with the horizon cost GNk defining the weighting function. Implementable filters are obtained
by a Sequential Monte Carlo method, see [10]. We now present the asymptotic stability result
for KL-MHE:

Theorem 4. (Asymptotic stability of KL-MHE). The estimator (13), under Assump-
tions 1 to 4, is an asymptotically stable observer for the system Σ.

Proof. We know that for any map T and measure µ, we have that dT#µ(x) = dµ
(
T −1(x)

)
.

It then follows from (14) that:

ρk(x) = ckρk−1(f−1
0 (x)) exp

(
−ηGNk (x)

)
.

We now rewrite the above as:

ρk(f0(x)) = ckρk−1(x) exp
(
−ηGNk (f0(x))

)
.

Repeating the above process k times, we obtain:

ρk(f
k
0 (x)) = Ckρ0(x) exp

(
−η

k∑
`=1

GN` (f `0(x))

)
,



where Ck = ckck−1 . . . c1 is the normalization constant. If x /∈ ΣT
−1(y0:T ), we have

that limk→∞ ρk(f
k
0 (x)) = 0, since

∑k
`=1G

N
` (f `0(x)) → ∞ as k → ∞ for all x /∈ ΣT

−1(y0:T )
(by definition of the cost function, the sum diverges over an infinitely long horizon). Thus,
we get:

lim
k→∞

µk

(
fk0
(
ΣT
−1(y0:T )

))
= lim

k→∞
µk
(
ΣT
−1(yk:k+T )

)
= 1.

7 Differential privacy

In this section, we discuss the mechanism for encoding the desired level of differential pri-
vacy in moving-horizon estimators. We then apply this mechanism to the two estimators
presented in the previous sections, the W2-MHE and KL-MHE. We conclude the section with
a discussion on differential privacy of the estimators over a time horizon. Our aim here is
to guarantee differential privacy of the measurement data y0:T , when the estimate sequence
{µk} is released (made public). We consider the class of scenarios where an adversary can
access the released estimates, while the measurement data itself is not accessible to the ad-
versary. Our goal in incorporating differential privacy in estimation is to ensure that the
adversary is not able to distinguish (in the sense of ε-differential privacy) between measure-
ment sequences that are δ-adjacent, using the released estimates, which is an underlying risk
when the estimates are directly released without such a consideration.

Given the framework (5), we encode differential privacy by an entropic regularization of
the estimation objective function, as follows:

µk ∈ arg min
µ∈P(X)

[
skD(µ, f0#µk−1) + skηEµ

[
GNk
]

−(1− sk)SKk(µ)
]
,

given µ0 ∈ P(X),

(15)

where sk ∈ [0, 1] is a tunable time-dependent parameter and Kk is the support of f0#µk−1

(with K0 being the support of µ0). Moreover, SA(µ) =
∫
A ρ log(ρ) dvol, where A ⊂ X

and dµ = ρdvol. We note that when sk = 1, the above formulation reduces to (5) and
when sk = 0, it is equivalent to an entropy maximization problem, yielding a uniform distri-
bution over the set f0(Kk−1) as the solution. Clearly, the uniform distribution is insensitive
to the measurements, and therefore offers maximum privacy, while being of no value to the
estimation objective. The ensuing analysis in this section is directed at determining upper
bounds on the parameter sequence {sk}k∈N such that the MHE offers ε-differential privacy.
We rewrite the optimization problem (15) for sk ∈ (0, 1] as follows:

µk ∈ arg min
µ∈P(X)

[
D(µ, f0#µk−1) + ηEµ

[
GNk
]

−
(

1− sk
sk

)
SKk(µ)

]
,

given µ0 ∈ P(X),

(16)



Let y, ỹ ∈ YT+N+1 be two δ-adjacent measurement sequences as in Definition 4, over a
horizon {0, . . . , T +N}, such that ‖y− ỹ‖ ≤ δ and let {µk}k∈N and {µ̃k}k∈N be the sequences
of estimates derived from (16). In the following, we determine conditions on {sk}k∈N that
guarantee differential privacy for each of the estimators derived in previous sections.

7.1 Differentially private W2-MHE

We now design a differentially private W2-moving-horizon estimator. We begin by consider-
ing:

µk ∈ arg min
µ∈P(X)

[
1

2
W 2

2 (µ, f0#µk−1) + ηEµ
[
GNk
]

−
(

1− sk
sk

)
SKk(µ)

]
,

given µ0 ∈ P(X),

(17)

for sk ∈ (0, 1].
The following theorem provides a sufficient upper bound on sT such that the entropy-

regularized W2-MHE in (17) is εT -differentially private at a time instant T .

Theorem 5. (Sensitivity of W2-MHE). Given two δ-adjacent measurement se-
quences y, ỹ ∈ YT+N+1, under Assumption 5, we have that the estimates generated by (17)

satisfy Dmax (µT , µ̃T ) ≤ εT if sT ≤ εT

(
εT + cTf diam(K0)

(
ηlδ + cTf diam(K0)q(δ)

))−1
,

where q : R≥0 → R≥0 is a class-K function that satisfies q(0) = 0.

Proof. Let GNk and G̃Nk be the estimation objective functions at time instant k, corresponding
to the measurement sequences y and ỹ respectively, and let µk and µ̃k be the respective
estimated probability measures, with ρk, ρ̃k the corresponding density functions. From (17),
we get that for all k ∈ {0, . . . , T}, µk, being the local minimizer is also a critical point of the
objective functional. We therefore obtain:

φk(x) +GNk (x) +

(
1− sk
sk

)
log(ρk(x)) = c,

where φk is the Kantorovich potential associated with the transport from µk to f0#µk−1

and c is a constant. It now follows that:

∇φk(x) +∇GNk (x) +

(
1− sk
sk

)
∇ log(ρk)(x) = 0.

Similarly, we have:

∇φ̃k(x) +∇G̃Nk (x) +

(
1− sk
sk

)
∇ log(ρ̃k)(x) = 0.

Taking the difference between the above two equations:

∇
[
log

(
ρk
ρ̃k

)]
(x) = −

(
sk

1− sk

)[
∇(φk − φ̃k)(x) +∇(GNk − G̃Nk )(x)

]
.



We have that ∇φk(x) = x − T−1
k (x), where µk = Tk# (f0#µk−1). This implies that ∇(φk −

φ̃k)(x) = −(T−1
k (x) − T̃−1

k (x)). However, T−1
k (x), T̃−1

k (x) ∈ f0(Kk−1) = fk0 (K0), and there-

fore ‖∇(φk − φ̃k)(x)‖ ≤ ckfdiam(K0)q(δ), for all x ∈ fk0 (K0) and some class-K function q.
We let q characterize the dependence of φ on the measurement sequence, and we get
that ‖∇(φk − φ̃k)(x)‖ = 0 for all x ∈ X, when δ = 0. Moreover, by Assumption 5, we
get ‖∇(GNk − G̃Nk )(x)‖ ≤ lδ. Therefore, we obtain:∥∥∥∥∇ [log

(
ρk
ρ̃k

)]∥∥∥∥ ≤ ( sk
1− sk

)(
ckfdiam(K0)q(δ) + lδ

)
. (18)

We also have that for any x ∈ fk0 (K0):

log

(
ρk
ρ̃k

)
(x) = log

(
ρk
ρ̃k

)
(x̄) +

∫ 1

0
∇
[
log

(
ρk
ρ̃k

)]
(γ(t)) · γ̇(t)dt, (19)

where γ(0) = x̄ and γ(1) = x. Since ρk and ρ̃k are continuous, with
∫
fk0 (K0)(ρk − ρ̃k) = 0

(since
∫
fk0 (K0) ρk =

∫
fk0 (K0) ρ̃k = 1), there exists an x̄ ∈ fk0 (K0) such that ρk(x̄) = ρ̃k(x̄), which

implies that log
(
ρk
ρ̃k

)
(x̄) = 0. From (18) and (19), for a straight line segment γ, we therefore

obtain: ∣∣∣∣log

(
ρk
ρ̃k

)
(x)

∣∣∣∣ ≤ ( sk
1− sk

)(
ckfdiam(K0)q(δ) + lδ

)
× ckfdiam(K0),

where we have used the fact that
∫ 1

0 |γ̇(t)|dt = ‖x− x̄‖ ≤ diam(fk0 (K0)) ≤ ckfdiam(K0). Thus,
for k = T , we let:∣∣∣∣log

(
ρT
ρ̃T

)
(x)

∣∣∣∣ ≤ ( sT
1− sT

)(
cTf diam(K0)q(δ) + lδ

)
× cTf diam(K0) ≤ εT ,

from which we obtain that:

sT ≤
εT(

εT + cTf diam(K0)
(
ηlδ + cTf diam(K0)q(δ)

)) ,
and since

∣∣∣log
(
ρT
ρ̃T

)
(x)
∣∣∣ ≤ εT for all x ∈ fT0 (K0), we have that supx∈fT0 (K0)

∣∣∣log
(
ρT
ρ̃T

)∣∣∣ =

Dmax(µT , µ̃T ) ≤ εT .

As noted earlier, Theorem 5 provides a sufficient upper bound on sT for differential privacy
of the estimate at T . The goal, however, is to guarantee the desired level of differential
privacy over a time horizon {0, . . . , T}. The key issue here is that the recursive update
scheme of the estimator introduces a dependence between the estimates at different time
instants. This essentially means that imposing an upper bound on sensitivity for the marginal
distributions µk individually, without regard to the dependence between these distributions,
may not be sufficient. Therefore, to guarantee the desired level of differential privacy over the
time horizon, we must impose an upper bound on the sensitivity of the joint distribution σ ∈
P(XT+1), where the estimates µk are the marginals of σ over X.

The following theorem provides a sufficient upper bound on {sk}Tk=1 such that the entropy-
regularized W2-MHE in (17) is ε-differentially private over a time horizon {0, . . . , T}.



Theorem 6. (Differentially private W2-MHE). Given two δ-adjacent measurement se-
quences y, ỹ ∈ YT+N+1, under Assumption 5, we have that the estimates generated by (17)

satisfy Dmax (σ, σ̃) ≤ ε if
∑T

k=1

(
sk

1−sk

)
ckf ≤

ε
lδdiam(K0) .

Proof. Let GNk and G̃Nk be the estimation objective functions at time instant k, corresponding
to the measurement sequences y and ỹ respectively, and let σ and σ̃ be the respective joint
probability measures over the horizon {0, . . . , T}. With a slight abuse of notation, we allow σ
and σ̃ to also denote the joint density function. We now have:

σ(x0, x1, . . . , xT ) = ρ0(x0)σ(x1, . . . , xT |x0) = ρ0(x0)ρ1(x1|x0)ρ2(x2|x1) . . . ρT (xT |xT−1),

where ρk(xk|xk−1) is the marginal density at xk at time instant k, given that the distribution
at time instant k − 1 is concentrated at xk−1. Moreover, we note that the W2-MHE (17)
yields a Markov process, which allows us to express ρk(xk|xk−1, . . . , x0) = ρk(xk|xk−1).
Now, ρk(xk|xk−1) is the density corresponding to the measure obtained by the following:

µk ∈ arg min
µ∈P(X)

[
1

2
W 2

2 (µ, ∂f0(xk−1)) + ηEµ
[
GNk
]
−
(

1− sk
sk

)
SKk(µ)

]
,

where ∂ξ is the Dirac measure concentrated at ξ. From the above, we get that for all k ∈
{0, . . . , T}, µk, being the local minimizer is also a critical point of the objective functional.
Applying similar steps to those in the proof of Theorem 5, we obtain:∣∣∣∣log

(
ρk
ρ̃k

)
(x|xk−1)

∣∣∣∣ ≤ ( sk
1− sk

)
lδckfdiam(K0).

Now, we have:∣∣∣log
(σ
σ̃

)
(x0, . . . , xT )

∣∣∣ ≤ T∑
k=1

∣∣∣∣log

(
ρ

ρ̃

)
(xk|xk−1)

∣∣∣∣ ≤ T∑
k=1

(
sk

1− sk

)
lδckfdiam(K0).

By taking

lδdiam(K0)

T∑
k=1

(
sk

1− sk

)
ckf ≤ ε,

we obtain the following inequality:

T∑
k=1

(
sk

1− sk

)
ckf ≤

ε

lδdiam(K0)
,

and that Dmax(σ, σ̃) ≤ ε.

We note that for a given ε, the upper bound on the sequence {sk} decreases with δ.
In other words, guaranteeing ε-differential privacy w.r.t. measurement sequences that are
farther apart requires the addition of more noise and a greater loss in estimation accuracy.
This is because the weighting on the entropic regularization term in the estimation objective
increases when sk is reduced. The same is the case when ε is reduced for a given δ, which
corresponds to a more stringent privacy requirement.



7.2 Differentially private KL-MHE

We now design a differentially private KL-moving-horizon estimator. We begin by considering
the entropy-regularized KL-MHE formulation, given by:

µk ∈ arg min
µ∈P(X)

[
DKL(µ‖f0#µk−1) + ηEµ

[
GNk
]

−
(

1− sk
sk

)
SKk(µ)

]
,

given µ0 ∈ P(X),

(20)

for sk ∈ (0, 1]. The corresponding recursive update scheme for (20) is given by:

ρk(x) = ck (f0#ρk−1(x))sk e−ηskG
N
k (x), (21)

which will be derived in the proof of Theorem 7 below.

The following theorem provides a sufficient upper bound on sk such that the entropy-
regularized KL-MHE in (20) is εT -differentially private at a time instant T , while ignoring
the correlations between the estimates µk across time.

Theorem 7. (Sensitivity of KL-MHE). Given two δ-adjacent measure-
ment sequences y, ỹ ∈ YT+N+1, under Assumption 5, we have that the es-

timates generated by (20) satisfy Dmax (µT , µ̃T ) ≤ εT if
∑T

k=1

(∏T
i=k si

)
≤

εT

(
2ηmaxk∈{0,...,T}

(
αk + lckfδdiam(K0)

))−1
, where αk = minξ∈fk0 (K0)

∣∣∣(GNk − G̃Nk ) (ξ)
∣∣∣.

Proof. Let GNk and G̃Nk be the estimation objective functions at time instant k, corresponding
to the measurement sequences y and ỹ respectively, and let µk and µ̃k be the respective
estimated probability measures, with ρk, ρ̃k the corresponding density functions. From (20),
we get that for all k ∈ {0, . . . , T}, µk, being the local minimizer is also a critical point of the
objective functional. We therefore obtain:

δ

δµ

[
DKL(µ‖f0#µk−1) + ηEµ

[
GNk
]
−
(

1− sk
sk

)
SKk(µ)

] ∣∣∣∣
µk

= c̄k,

from which we derive that:

log

(
ρk

f0#ρk−1

)
(x) + ηGNk (x) +

(
1− sk
sk

)
log ρk(x) = c̄k.

The above equation can be rewritten as follows:

ρk(x) = ck (f0#ρk−1(x))sk e−ηskG
N
k (x) = ck

(
ρk−1(f−1

0 (x))
)sk e−ηskGN

k (x),

where ck is the normalization constant. We therefore obtain:

ρk(f0(x)) = ck (ρk−1(x))sk e−ηskG
N
k (f0(x)).



Expanding the above, we get:

ρT (fT0 (x)) = CT (ρ0(x))
∏T

k=1 sk e−η
∑T

k=1(
∏T

i=k si)GN
k (fk0 (x)),

where CT = c1c2 . . . cT . Similarly, we have:

ρ̃T (fT0 (x)) = C̃T (ρ̃0(x))
∏T

k=1 sk e−η
∑T

k=1(
∏T

i=k si)G̃N
k (fk0 (x)),

where C̃T = c̃1c̃2 . . . c̃T and ρ0 = ρ̃0, as we assume that the estimator starts with the same
initial µ0. From the above two equations, we obtain:

log

(
ρT
ρ̃T

)
(fT0 (x)) = log

(
CT

C̃T

)
− η

T∑
k=1

(
T∏
i=k

si

)(
GNk − G̃Nk

)
(fk0 (x)).

The max-divergence between µT and µ̃T can be upper bounded now by:

Dmax(µT , µ̃T ) = sup
x∈K0

∣∣∣∣log

(
ρT
ρ̃T

)
(fT0 (x))

∣∣∣∣
≤
∣∣∣∣log

(
CT

C̃T

)∣∣∣∣+ sup
x∈K0

η

T∑
k=1

(
T∏
i=k

si

)
×
∣∣∣(GNk − G̃Nk ) (fk0 (x))

∣∣∣
≤ 2 sup

x∈K0

η
T∑
k=1

(
T∏
i=k

si

)∣∣∣(GNk − G̃Nk ) (fk0 (x))
∣∣∣ ,

where the final inequality is due to the following (note that we use the fact that ρ = ρ̃, as
mentioned earlier):∣∣∣∣log

(
CT

C̃T

)∣∣∣∣ =

∣∣∣∣∣∣log

∫x∈K0
(ρ0(x))

∏T
k=1 sk e−η

∑T
k=1(

∏T
i=k si)GN

k (fk0 (x))∫
x∈K0

(ρ̃0(x))
∏T

k=1 sk e−η
∑T

k=1(
∏T

i=k si)G̃N
k (fk0 (x))

∣∣∣∣∣∣
≤ sup

x∈K0

∣∣∣∣∣log

(
e−η

∑T
k=1(

∏T
i=k si)GN

k (fk0 (x))

e−η
∑T

k=1(
∏T

i=k si)G̃N
k (fk0 (x))

)∣∣∣∣∣
≤ sup

x∈K0

η

T∑
k=1

(
T∏
i=k

si

)∣∣∣(GNk − G̃Nk ) (fk0 (x))
∣∣∣ .

We now have, for all k ∈ {1, . . . , T}:(
GNk − G̃Nk

)
(fk0 (x)) =

(
GNk − G̃Nk

)
(ξk) +

∫ 1

0
∇
(
GNk − G̃Nk

)
(γk(t)) · γ̇k(t)dt,

where γk(0) = ξk and γk(1) = fk0 (x). From Assumption 5, we have
∥∥∥∇(GNk − G̃Nk ) (ξ)

∥∥∥ ≤ lδ.
Moreover, let ξk ∈ fk0 (K0) such that

∣∣∣(GNk − G̃Nk ) (ξk)
∣∣∣ = minfk0 (K0)

∣∣∣(GNk − G̃Nk )∣∣∣ = αk, and

we obtain: ∣∣∣(GNk − G̃Nk ) (fk0 (x))
∣∣∣ ≤ αk + lδdiam(fk0 (K0)) ≤ αk + lckfδdiam(K0).



This yields the following inequality:

2 sup
x∈K0

η
T∑
k=1

(
T∏
i=k

si

)∣∣∣(GNk − G̃Nk ) (fk0 (x))
∣∣∣ ≤ 2η

T∑
k=1

(
T∏
i=k

si

)(
αk + lckfδdiam(K0)

)
≤ 2ηmax

k

(
αk + lckfδdiam(K0)

) T∑
k=1

(
T∏
i=k

si

)
.

We now let:

2ηmax
k

(
αk + lckfδdiam(K0)

) T∑
k=1

(
T∏
i=k

si

)
≤ εT ,

which yields the bound

T∑
k=1

(
T∏
i=k

si

)
≤ εT

2ηmaxk

(
αk + lckfδdiam(K0)

) ,
and we get Dmax(µT , µ̃T ) ≤ εT .

We note here that, in practice, with the choice of a sufficiently large domain K0, we can

ensure that αk = minξ∈fk0 (K0)

∣∣∣(GNk − G̃Nk ) (ξ)
∣∣∣ = 0 for all k ∈ {0, . . . , T}. This is owing

to the fact that for a large enough K0, we will have minξ∈fk0 (K0)

(
GNk − G̃Nk

)
(ξ) ≤ 0 ≤

maxξ∈fk0 (K0)

(
GNk − G̃Nk

)
(ξ). Moreover, since the function GNk − G̃Nk is continuous, there

must therefore exist a point ξ∗ such that
(
GNk − G̃Nk

)
(ξ∗) = 0.

As with the W2-MHE, we now characterize the differential privacy of the KL-MHE over
a horizon {0, . . . , T}. We recall that the KL-MHE yields a sequence of distributions {µk}Tk=0

over the time horizon. Differential privacy over the horizon requires an upper bound on the
sensitivity of the joint distribution σ over the horizon, where µk is the marginal of σ at the
time instant k. As before, with a slight abuse of notation, letting σ also denote the joint
density function, we have:

σ(x0, x1, . . . , xT ) = ρ0(x0)σ(x1, . . . , xT |x0) = ρ0(x0)ρ1(x1|x0)ρ2(x2|x1) . . . ρT (xT |xT−1).

From the above, we infer that to estimate the sensitivity of the joint density function, we
must estimate the sensitivity of the conditionals ρk(xk|xk−1). The conditional ρk(xk|xk−1)
at any time instant k, is obtained from the coupling between the marginal distributions µk
and µk−1.

We now obtain an upper bound for the case where the marginals µk are independently
coupled. In other words, we suppose that:

σ(x0, x1, . . . , xT ) = ρ0(x0)σ(x1, . . . , xT |x0) = ρ0(x0)ρ1(x1)ρ2(x2) . . . ρT (xT ). (22)

Theorem 8. (Differentially private KL-MHE). Given two δ-adjacent measurement se-
quences y, ỹ ∈ YT+N+1, under Assumption 5 and the independent coupling (22), we have

that the estimates generated by (20) satisfy Dmax (σ, σ̃) ≤ ε if
∑T

k=1

∑k
l=1

(∏k
i=l si

)
≤

ε
(

2ηmaxk

(
αk + lckfδdiam(K0)

))−1
, where αk = minξ∈fk0 (K0)

∣∣∣(GNk − G̃Nk ) (ξ)
∣∣∣.



Proof. Let GNk and G̃Nk be the estimation objective functions at time instant k, corresponding
to the measurement sequences y and ỹ respectively, and let σ and σ̃ be the respective joint
probability measures over the horizon {0, . . . , T}. With a slight abuse of notation, we allow σ
and σ̃ to also denote the joint density function. From (22), we get:

log
(σ
σ̃

)
(x0, . . . , xT ) =

T∑
k=1

log

(
ρk
ρ̃k

)
(xk),

which implies that:

Dmax(σ, σ̃) ≤
T∑
k=1

Dmax(µk, µ̃k).

From the proof of Theorem 7 on the sensitivity of KL-MHE, we further get:

Dmax(σ, σ̃) ≤
T∑
k=1

Dmax(µk, µ̃k) ≤ 2ηmax
k

(
αk + lckfδdiam(K0)

) T∑
k=1

k∑
l=1

(
k∏
i=l

si

)
.

Therefore, it holds that Dmax(σ, σ̃) ≤ ε if:

T∑
k=1

k∑
l=1

(
k∏
i=l

si

)
≤ ε

2ηmaxk

(
αk + lckfδdiam(K0)

) .

8 Simulation results

In this section, we present results from numerical simulations of the estimators studied in
this paper. The simulations were performed in MATLAB (version R2017a) on a 2.5 GHz
Intel Core i5 processor.

We considered the following nonlinear discrete-time system:

x1(k + 1) = x1(k) + τx2(k),

x2(k + 1) = x2(k)− τ x1(k)

1 + |x1(k)|2 + |x2(k)|2
+ wk,

y(k) = x1(k) + vk,

with τ = 0.1, wk and vk are i.i.d disturbances, sampled uniformly from the intervals [−0.1, 0.1]

and [−0.15, 0.15] respectively, and a quadratic estimation objective function JT (y
(1)
0:T ,y

(2)
0:T ) =

‖y1
0:T − y2

0:T ‖2.
We first present the simulation results for W2-MHE. We ran 30 trials of the estimator (9)

on the same measurement sequence, with randomly generated initial conditions and over a
time horizon of length T = 100. The length of the moving-horizon was chosen to be N = 10.
Figure 1 contains the plots of the mean of the estimates along with the true states. The root
mean squared error (RMSE) for the mean state estimate sequences were found to be z1

RMSE =



Figure 1: Mean state estimates from 30 trials of W2-MHE

0.0856 and z2
RMSE = 0.0846 for the estimates of x1 and x2, respectively. The average time

for computing the state estimate through the minimization (9) using the fminunc function
in MATLAB was observed to be tcomp = 0.012± 0.02s.

We then implemented the estimator (13) with 30 samples, over a time horizon of
length T = 100. The length of the moving-horizon was chosen to beN = 10. Figure 2 contains
the plots of the mean of the estimates along with the true states. The root mean squared
error (RMSE) for the mean state estimate sequences were found to be z1

RMSE = 0.1073
and z2

RMSE = 0.1144 for the estimates of x1 and x2, respectively. The average run-time for
the minimization (13) by a resampling method was observed to be tcomp = (4.8±0.4)×10−4s.

In simulation, with 30 samples, we find that the W2-MHE performs better with respect
to the root mean squared error, while the KL-MHE is much faster. The performance of the
KL-MHE is determined by the richness of the sample set and effectiveness of the resampling
procedure, choices that depend on context and experience. In this manuscript, we did not
attempt to investigate improvements in performance with respect to these choices. The
performance of W2-MHE does not necessarily improve with the richness of the sample set,
but for systems for which ΣT

−1(y0:T ) is not a singleton, a richer sample set allows for a more
complete characterization of the set of feasible estimates.

Figure 3 illustrates the typical trade-off between accuracy and privacy in moving-horizon
estimation. We considered constant weights sk = s for the entropic regularization terms
in (17) and (20). The values of s were chosen such that they satisfied the bounds specified in



Figure 2: Mean state estimates from KL-MHE with 30 samples

Figure 3: RMSE in estimates of state x1 for W2-MHE, averaged over 30 samples for different
values of ε



Theorems 6 and 8 for ε-differential privacy of the estimators over the horizon. In Figure 3,
we plot the RMSE (for the estimates of the state x1) for W2-MHE, averaged over the 30
samples, specifying the accuracy, for different values of ε, the privacy parameter. We recall
that a higher value of ε indicates a less stringent privacy requirement. We notice that the
the accuracy of the estimators improves with an increase in the privacy parameter.

9 Conclusions

In this work, we laid out a unifying probabilistic framework for moving-horizon estimation.
We clearly established the connection between the classical notion of strong local observability
and the stability of moving-horizon estimation, for nonlinear discrete-time systems. We then
proposed a differentially private mechanism based on entropic regularization and derived
conditions under which ε-differential privacy is guaranteed at any given time instant and over
time horizons. As an extension to this work, we intend to include distributional constraints
in the moving-horizon estimation framework. An important consideration in the estimation
problem, in addition to the asymptotic stability, is the rate of convergence of the observer. It
is of interest to obtain convergence rate bounds for the moving-horizon estimators proposed in
this paper, and to compare their performance for various choices of the metric (or divergence)
in the unifying formulation, which will be undertaken in our future work.
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