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Abstract

In this work, we design distributed control laws for spatial self-organization of multi-
agent swarms in 1D and 2D spatial domains. The objective is to achieve a target density
function over a simply-connected spatial domain. Since individual agents in a swarm are
not themselves of interest and we are concerned only with the macroscopic objective, we
view the network of agents in the swarm as a discrete approximation of a continuous
medium and design control laws to shape the density function of the continuous medium.
The key feature of this work is that the agents in the swarm do not have access to position
information. Each individual agent is capable of measuring the current local density of
agents and can communicate with its spatial neighbors. The network of agents implement
a Laplacian-based distributed algorithm, which we call pseudo-localization, to localize
themselves in a new coordinate frame, and a distributed control law to converge to the
target spatial density function. We start by studying self-organization in one-dimension,
which is then followed by the two-dimensional case.

1 Introduction

Self-organization in swarms refers broadly to the emergence of patterns of long-range order
in large groups of dynamic agents which interact locally with each other. It is a pervasive
phenomenon in nature, observed in biological [7] and other natural systems [36]. In the
context of robotic systems, problems of deployment and formation control of groups of robots
have been extensively studied [6, 11, 21, 27, 32]. More recently, research efforts have been
undertaken to massively increase the scale of these robotic systems [30]. This transition
does not merely involve an increase in the size of robotic networks, but it also introduces
new theoretical challenges for their analysis and control design. In particular, large groups
of agents have some essential characteristics that distinguish them from other smaller-scale
counterparts. In a swarm, individual agents have no significance and only the macroscopic
objectives are relevant. A swarm largely remains unaffected by the removal of a large, but
discrete, number of agents. Moreover, it is difficult (and needlessly complicated) to specify
the global configuration of the swarm using the states of individual agents; instead, employing
macroscopic quantities such as the swarm spatial density function to specify its configuration
is more appropriate. From an analysis and control-theoretic viewpoint, the dynamic modeling
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of swarms is less explored, which e.g. can be established by means of PDEs, for which control
theoretic tools are less well developed in comparison to ODEs. These theoretical challenges
motivate the investigation of self-organization in large-scale swarms.

In the literature, Markov-chain based methods have been widely used in addressing some
of the key theoretical problems pertaining to swarm self-organization. By means of it, the
swarm configuration is described through the partitioning the spatial domain in a finite
number of larger size disjoint subregions, on which a probability distribution is defined. Then,
the self-organization problem is reduced to the design of the transition matrix governing the
evolution of this probability density function to ensure its convergence to a desired profile. A
recent approach to density control using Markov chains is presented in [12], which includes
additional conflict-avoidance constraints. In this setting every agent is able to determine the
bin to which it belongs at every instant of time, which essentially means that individual agents
have self-localization capabilities. Also, the dimensional transition matrix is synthesized in
a central way at every instant of time by solving a convex optimization problem. In [3], the
authors make use of inhomogeneous Markov chains to minimize the number of transitions to
achieve a swarm formation. In this approach, the algorithm necessitates the estimation of
the current swarm distribution, and computes the transition Markov matrices for each agent,
at each instant of time. The fact that every agent needs to have an estimate of the global
state (swarm distribution) at every time may not be desirable or feasible. The localization
of each agent still remains to be a main assumption. Under similar conditions, one can find
the manuscripts [1] and [8], which describe probabilistic swarm guidance algorithms. In [5],
the authors present an approach to task allocation for a homogeneous swarm of robots. This
is a Markov-chain based approach, where the goal is to converge to the desired population
distribution over the set of tasks.

In the context of robotic swarms, programmable self-assembly of two-dimensional shapes
with a thousand-robot swarm is demonstrated in [31]. These robots are capable of measuring
distances to nearby neighbors which they use to localize themselves relative to other localized
robots. Each robot then uses its position to implement an edge-following algorithm.

Another approach uses partial differential equations to model swarm behaviour, and con-
trol action is applied along the boundary of the swarm. Previous works on PDE-based
methods with boundary control include [18], where the authors present an algorithm for the
deployment of agents onto families of planar curves. Here, the swarm collective dynamics are
modeled by the reaction-advection-diffusion PDE and the particular family of curves to which
the swarm is controlled to is parametrized by the continuous agent identity in the interval
of unit length. An extension of this work to deployment on a family of 2D surfaces in 3D
space can be found in [29]. The problem of planning and task allocation is addressed in the
framework of advection-diffusion-reaction PDEs in [14]. In [17] and [16], the authors present
an optimal control problem formulation for swarm systems, where microscopic control laws
are derived from the optimal macroscopic description using a potential function approach.

The problem of position-free extremum-seeking of an external scalar signal using a swarm
of autonomous vehicles, inspired by bacterial chemotaxis, has been studied in [28].

In this work, we adopt a viewpoint outlined in [2], wherein we make an amorphous medium
abstraction of the swarm, which is essentially a manifold with an agent located at each point.
We then model the system using PDEs and design distributed control laws for them. An
important component of this paper is the Laplacian-based distributed algorithm which we
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call pseudo-localization algorithm, which the agents implement to localize themselves in a
new coordinate frame. The convergence properties of the graph Laplacian to the manifold
Laplacian have been studied in [4], which find useful applications in this paper.

The main contribution of this paper is the development of distributed control laws for
the index- and position-free density control of swarms to achieve general 1D and a large class
of 2D density profiles. In very large swarms with thousands of agents, particularly those
deployed indoors or at smaller scales, presupposing the availability of position information or
pre-assignment of indices to individual agents would be a strong assumption. In this paper,
in addition to not making the above assumptions, the agents are only capable of measuring
the local density, and in the 2D case, the density gradient and the normal direction to the
boundary.

Under these assumptions, we present distributed pseudo-localization algorithms for one
and two dimensions that agents implement to compute their position identifiers. Since every
agent occupies a unique spatial position, we are able to rigorously characterize the resulting
position assignment as a one-to-one correspondence between the set of spatial coordinates
and the set of position identifiers, which corresponds to a diffeomorphism of the continuum
domain. Based on this assignment, we then design control strategies for self-organization in
one and two dimensions under the assumption that the motion control of agents is noiseless.
The extension to the 2D case leads to new difficulties related to the control of the swarm
boundaries. To address these, we implement a variant of the 1D pseudo-localization algorithm
at the boundary during an initialization phase. A preliminary version of this work appeared
in [23] where we presented an outline of the algorithms and stated some of the results. We
develop them here rigorously, providing detailed proofs for our claims.

The paper is organized as follows. In Section 2, we introduce the basic notation and
preliminary concepts used in the manuscript. We present the analysis of self-organization
in one dimension in Section 4, where we introduce the pseudo-localization algorithm in Sec-
tion 4.1 and the distributed control law in Section 4.2. After this, we generalize and extend
the analysis for self-organization in two dimensions in Section 5. Section 6 contains numerical
simulations of the results in the paper, and in Section 7, we present our conclusions.

2 Preliminaries

Let R denote the set of all real numbers, R≥0 the set of non-negative real numbers, and Rn

the n-dimensional Euclidean space. We use boldface letters to denote vectors in Rn. The
norm |x| of a vector x ∈ Rn is the standard Euclidean 2-norm, unless otherwise specified. Let

∇ =
(

∂
∂x1

, . . . ∂
∂xn

)
denote the gradient operator in Rn when acting on real-valued functions

and the Jacobian in the context of vector-valued functions. As a shorthand, we let ∂
∂z (·) =

∂z(·) for a variable z. Let ∆ =
∑n

i=1
∂2

∂x2i
be the Laplace operator in Rn. We denote by either

Ṡ or dS
dt the total time derivative of S(t). Given functions f, g : R → R, we write f = O(g)

if there exist positive constants C and c such that |f(h)| ≤ C|g(h)|, for all |h| ≤ c. Let S
denote the set of agents in the swarm, and N its cardinality. For the 1D case, let l ∈ S denote
the leftmost agent, and r ∈ S the rightmost one. Let Ni denote the spatial neighborhood of
agent i, which comprises those agents located inside a small ball centered at i. A set-valued
mapping, denoted by f : R ⇒ R2, maps the set of real numbers onto subsets of R2. For a
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bounded open set Ω ⊂ Rn, ∂Ω denotes its boundary, Ω̄ = Ω∪ ∂Ω its closure and Ω̊ = Ω \ ∂Ω
its interior with respect to the standard Euclidean topology. The set of smooth real-valued
functions on Ω is denoted by C∞(Ω). We let µ (or dx in 1D) denote the standard Lebesgue
measure; with a slight abuse of notation, we sometimes omit dµ (resp. dx in 1D) from long
integrals. The Dirac measure δ on Ω defined for any x ∈ Ω and any measurable set D ⊆ Ω
is given by δx(D) = 1 for x ∈ D, and δx(D) = 0 for x /∈ D.

For two non-empty subsets M1 and M2 of a metric space (M,d), the Hausdorff distance
dH(M1,M2) between them is defined as:

dH(M1,M2) = max{ sup
x∈M1

inf
y∈M2

d(x, y), sup
y∈M2

inf
x∈M1

d(x, y)}. (1)

On a measurable space U , let Lp(U) = {f : U → R | ‖f‖Lp(U) =
(∫
U |f |pdµ

)1/p
< ∞}

constitute the Lp space, where ‖ · ‖Lp(U) is the Lp norm. Of particular interest is the L2

space, or the space of square-integrable functions. In this paper, we denote by ‖f‖L2(U) the
L2 norm of f with respect to the Lebesgue measure, and by ‖f‖L2(U,ρ) the weighted L2 norm
(with the strictly positive weight ρ on U). The Sobolev space W 1,p(U) over a measurable

space U is defined as W 1,p(U) = {f : U → R | ‖f‖W 1,p =
(∫
U |f |p +

∫
U |∇f |p

)1/p
< ∞}. Of

particular interest is the space W 1,2, also called the H1 space. For two functions f(t, ·) and
g(·), we denote by f →L2 g the convergence in L2 norm (over the domain U of the functions)
of f(t, ·) to g(·) as t→∞, that is, limt→∞ ‖f(t, ·)− g(·)‖L2 = 0. Convergence in H1 norm is
denoted similarly by f →H1 g.

We now state some well-known results that we will be used in the subsequent sections of
this paper.

Lemma 1. (Divergence Theorem [10]). For a smooth vector field F over a bounded open set
Ω ⊆ Rn with boundary ∂Ω, the volume integral of the divergence ∇ · F of F over Ω is equal
to the surface integral of F over ∂Ω:

∫

Ω
(∇ · F) dµ =

∫

∂Ω
F · n dS, (2)

where n is the outward normal to the boundary and dS the measure on the boundary. For a
scalar field U and a vector field F defined over Ω ⊆ Rn:

∫

Ω
(F · ∇U) dµ =

∫

∂Ω
U(F · n) dS −

∫

Ω
U(∇ · F) dµ.

Lemma 2. (Leibniz Integral Rule [10]). Let f ∈ C∞(R × Rn) and Ω : R ⇒ Rn be a smooth
one-parameter family of bounded open sets in Rn generated by the flow corresponding to the
smooth vector field v on Rn. Then:

d

dt

(∫

Ω(t)
f(t, r) dµ

)
=

∫

Ω(t)
∂t(f(t, r)) dµ+

∫

∂Ω(t)
f(t, r)v · n dS.

Corollary 1. (Derivative of Energy Functional). Let U be an energy functional defined as
follows:

U =
1

2

∫

Ω
|f |2 dµ,
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for some function f : Ω→ R. Then,

U̇ =

∫

Ω
f ·
(
df

dt

)
dµ+

1

2

∫

Ω
|f |2∇ · v dµ.

where d
dt = ∂t + v · ∇ is the total derivative.

Proof. We have included the proof for this corollary for the sake of completeness. Using
the Leibniz integral rule and the Divergence theorem, we have (it is understood that the
integrations are with respect to the measure µ):

∂U

∂t
=

∫

Ω
f · ft +

1

2

∫

∂Ω
|f |2v · n

=

∫

Ω
f · ft +

1

2

∫

Ω
∇ · (|f |2v)

=

∫

Ω
f · ft +

∫

Ω
f · (v · ∇)f +

1

2

∫

Ω
|f |2∇ · v

=

∫

Ω
f · (ft + (v · ∇)f) +

1

2

∫

Ω
|f |2∇ · v

=

∫

Ω
f ·
(
df

dt

)
+

1

2

∫

Ω
|f |2∇ · v.

Lemma 3. (Poincaré-Wirtinger Inequality [26]). For p ∈ [1,∞] and Ω, a bounded connected
open subset of Rn with a Lipschitz boundary, there exists a constant C depending only on Ω
and p such that for every function u in the Sobolev space W 1,p(Ω):

‖u− uΩ‖Lp(Ω) ≤ C‖∇u‖Lp(Ω),

where uΩ = 1
|Ω|
∫

Ω udµ, and |Ω| is the Lebesgue measure of Ω.

Lemma 4. (Rellich-Kondrachov Compactness Theorem [15]). Let U ⊂ Rn be open, bounded
and such that ∂U is C1. Suppose 1 ≤ p < n, then W 1,p(U) is compactly embedded in Lq(U)
for each 1 ≤ q < pn

n−p . In particular, we have W 1,p(U) is compactly contained in Lp(U).

Lemma 5. (LaSalle Invariance Principle [20, 34, 35]). Let {P(t) | t ∈ R≥0} be a continuous
semigroup of operators on a Banach space U (closed subset of a Banach space with norm ‖·‖),
and for any u ∈ U , define the positive orbit starting from u at t = 0 as Γ+(u) = {P(t)u | t ∈
R≥0} ⊆ U . Let V : U → R be a continuous Lyapunov functional on G ⊂ U for P (such
that V̇ (u) = d

dtV (P(t)u) ≤ 0 in G). Define E = {u ∈ Ḡ | V̇ (u) = 0}, and let Ẽ be the largest
invariant subset of E. If for u0 ∈ G, the orbit Γ+(u0) is pre-compact (lies in a compact subset
of U), then limt→+∞ dU (P(t)u0, Ẽ) = 0, where dU (y, Ẽ) = infx∈Ẽ ‖y − x‖U (where dU is the
distance in U).
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2.1 Continuum model of the swarm

Given that N , the number of agents in the swarm, is very large, we will analyze the swarm
dynamics through a continuum approximation. Let t ∈ R≥0, and let M : R ⇒ Rn be a smooth
one-parameter family of bounded open sets, such that the agents are deployed over M̄(t) at
time t. We denote by ṙi(t) = vi, ∀i ∈ S, where ri(t) ∈ M̄(t) is the position of the ith agent
in the swarm at time t. Let ρ : R≥0 × Rn → R≥0 be the spatial density function supported
on M̄(t) for all t ≥ 0 (with ρ(t, r) > 0 for r ∈ M̄(t)), such that

∫
M(t) ρ(t, r)dµ = 1. We

assume that M(t) is simply connected and that the boundary ∂M(t) does not self-intersect
for all t ≥ 0.

Assuming that ρ is smooth, the macroscopic dynamics can now be described by the
continuity equation [10], assuming that the total number of agents is conserved:

∂ρ

∂t
+∇ · (ρv) = 0, ∀ r ∈ M̊(t), (3)

where v : R≥0×Rn → Rn is the velocity field with vi(t) = v(t, ri), such that the one-parameter
family M is generated by the flow associated with v.

2.2 Harmonic maps and diffeomorphisms

Let (M, g) and (N,h) be two Riemannian manifolds of dimensions m and n, and Riemannian
metrics g and h, respectively. A map φ : M → N is called harmonic if it minimizes the
functional:

E(φ) =

∫

M
|∇φ|2dvg, (4)

where dvg is the Riemannian volume form on M . The Euler-Lagrange equation for the
functional E, which also yields the minimum energy, is given by ∆φ = 0, the Laplace equation
[22]. It is useful to note that the solutions to the heat equation, in the limit t → ∞,
approach the harmonic map. This is proved later in Lemma 9, and forms the basis for the
design of the distributed pseudo-localization algorithm. We now state a lemma on harmonic
diffeomorphisms of Riemann surfaces (i.e., m = n = 2 above).

Lemma 6. (Harmonic diffeomorphism [13]). Let (M, g) be a compact surface with boundary
and (N,h) a compact surface with non-positive curvature. Suppose that ψ : M → N is a
diffeomorphism onto ψ(M). Assume that ψ(M) is convex. Then there is a unique harmonic
map φ : M → N with φ = ψ on ∂M , such that φ : M → φ(M) is a diffeomorphism.

We note that the non-positive curvature constraint in the lemma is essentially a constraint
on the metric h on N , and the curvature is zero for the Euclidean metric.

3 Problem description and conceptual approach

In this section, we provide a high-level description of the proposed problem and explain the
conceptual idea behind our approach. The technical details can be found in the following
sections.
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The problem at hand is to ultimately design a distributed control law for a swarm to
converge to a desired configuration. Here, a swarm configuration is a density function ρ of
the multi-agent system and the objective is that agents reconfigure themselves into a desired
known density ρ∗. To do this, an agent at position x is able to measure the current local
density value, ρ(t, x); however, its position x within the swarm is unknown. Thus, given ρ∗,
an agent at x cannot directly compute ρ∗(x) nor a feedback law based on ρ − ρ∗. To solve
this problem, we devise a mechanism that allows agents to determine their coordinates in a
distributed way in an equivalent coordinate system.

Note that, given a diffeomorphism Θ∗ from the spatial domain of the swarm onto the unit
interval or disk (i.e. a coordinate transformation), we can equivalently provide the agents
with a transformed density function p∗, such that p∗ = ρ∗ ◦ (Θ∗)−1. In this way, instead of ρ∗

the agents are given p∗, but still do not have access to Θ∗. The pseudo-localization algorithm
is a mechanism that agents employ to progressively compute an appropriate (configuration-
dependent) diffeomorphism by local interactions.

In 1D, the pseudo-localization algorithm is a continuous-time PDE system in a new vari-
able or pseudo-coordinate X which plays the role of an “approximate x coordinate” that
agents can use to know where they are. The input to this system is the current density value
ρ, see Figure 1 for an illustration, and the objective is that X converges to a ρ-dependent
diffeomorphism. On the other hand, the variable X and the function p∗ are used to define
the control input of another PDE system in the density ρ. In this way, we have a feedback
interconnection of two systems, one in X and one in ρ, with the goal to achieve X → Θ∗ (the
pseudo-coordinate X converges to a true coordinate given by Θ∗) and ρ→ ρ∗.

∂tX = G(X, ρ)

∂tρ = F (ρ, X, p∗)

{
X → Θ∗ (coordinates)

ρ → ρ∗ (objective)

Figure 1: Feedback interconnection of pseudo-localization system in X and system in ρ in the
1D case. The function p∗ is an equivalent density objective provided to agents in terms of a
diffeomorphism Θ∗. The variables X play the role of coordinates and eventually converge to
the true coordinates given by Θ∗. Agents use p∗ and X to compute the control in the equation
ρ. In turn, agents move and this will require a re-computation of coordinates or update in
X. The control strategy in the 2D case (stages 2 and 3) can be interpreted similarly.

As for the control design methodology, we follow a constructive, Lyapunov-based approach
to designing distributed control laws for the swarm dynamics modeled by PDEs. For this,
we define appropriate non-negative energy functionals that encode the objective and choose
control laws that keep the time derivative of the energy functional non-positive. This, along
with well-known results on the precompactness of solutions as in Lemma 4, the Rellich
Kondrachov compactness theorem, allows us to apply the LaSalle Invariance Principle in
Lemma 5 and other technical arguments to establish the convergence results that we seek.
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In the 1D case, we can identify a set of diffeomorphisms Θ associated with any ρ that
eventually converge to Θ∗, and simultaneously control boundary agents into a desired fi-
nal domain (the support of ρ∗). These are given by the cumulative distribution function
associated with the density function; see Section 4.1. The 2D case is more complex, and
analogous results could not be derived in their full generality. Unlike the 1D case, estimating
the cumulative distribution is not straightforward in the 2D case. Instead, we set out to
find diffeomorphisms as the result of a distributed algorithm. Given that the discretization
of heat flow naturally leads to distributed algorithms, we investigate under what conditions
this is the case via harmonic map theory. On the control side, there also are additional
difficulties, and because of this, we simplify the control strategy into three stages. In the
first stage, the boundary agents are re-positioned onto the boundary of the desired domain
while containing the others in the interior. Once this is achieved, the second and third stages
can be seen again as the interconnection of two systems in pseudo-coordinates R = (X,Y )
(instead of X) and ρ, analogously to Figure 1. However, we apply a two time-scale separation
for analysis by which coordinates are computed in a fast-time scale and reconfiguration is
done in a slow-time scale, which allows for a sequential analysis of the two stages. We then
study the robustness of this approach.

4 Self-organization in one dimension

In this section, we present our proposed pseudo-localization algorithm and the distributed
control law for the 1D self-organization problem.

For each t ∈ R≥0, let M(t) = (0, L(t)) ⊂ R be the interval (with boundary {0, L(t)}) in
which the agents are distributed in 1D, and let ρ : R × R → R≥0 be the normalized density
function supported on M̄(t), for all t ≥ 0 (with ρ(t, x) > 0, ∀x ∈ M̄(t)), describing the swarm
on that interval. Without loss of generality, we place the origin at the leftmost agent of the
swarm. We also assume that the leftmost and the rightmost agents, l and r, are aware that
they are at the boundary. Let ρ∗ : M̄∗ = [0, L∗] → R>0 be the desired normalized density
function.

Since a direct feedback control law can not be implemented by agents because they do
not have access to their positions, we introduce an equivalent representation of the density
ρ∗, p∗, depending on a particular diffeomorphism Θ∗. First, define Θ∗ : M̄∗ → [0, 1] such
that Θ∗(x) =

∫ x
0 ρ
∗(x̄)dx̄ and Θ∗(L∗) = 1.

Now, let p∗ : [0, 1]→ R>0, and θ∗ ∈ Θ∗(M̄∗) = [0, 1], be such that p∗(θ∗) = ρ∗((Θ∗)−1(θ∗)) =
ρ∗(x).

ρ∗(x) = p∗(θ∗)

x ∈ [0, L∗] Θ∗(x) = θ∗ ∈ [0, 1]

ρ∗

Θ∗

p∗

The function p∗, which represents the desired density function mapped onto the unit
interval [0, 1], is computed offline and is broadcasted to the agents prior to the beginning
of the self-organization process. We use p∗ to derive the distributed control law which the
agents implement. We assume that p∗ is a Lipschitz function in the sequel.
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Assumption 1. (Uniform boundedness of density function). We assume that the density
function and its derivative are uniformly bounded in its support, that is, for ρ(t, ·) and ∂xρ(t, ·)
there exist uniform lower bounds dl, Dl and uniform upper bounds du, Du (where 0 < dl ≤
du < ∞ and 0 < Dl ≤ Du < ∞) (that is, dl ≤ ρ(t, x) ≤ du for all t ∈ R≥0 and x ∈ [0, L(t)]
and Dl ≤ ∂xρ(t, x) ≤ Du for all t ∈ R≥0 and x ∈ (0, L(t))).

4.1 Pseudo-localization algorithm in one dimension

We first consider the static case, that is, the design of the pseudo-localization dynamics
on X of the upper block in Figure 1, when the agents and ρ are stationary. We define
Θ : M̄ = [0, L]→ [0, 1] as:

Θ(x) =

∫ x

0
ρ(x̄)dx̄, (5)

such that Θ(L) = 1. In other words, Θ is the cumulative distribution function (CDF)
associated with ρ. (Note that the domains are static and hence the argument t has been
dropped, which will be reintroduced later.)

Lemma 7. (The CDF diffeomorphism). Given ρ : M̄ → R>0, a C1 function, the mapping
Θ : M̄ → [0, 1] as defined above, is a diffeomorphism and Θ(M̄) = [0, 1].

Proof. Since ρ(x) > 0, ∀x ∈ M̄ , it follows that Θ is a strictly increasing function of x,
and is therefore a one-to-one correspondence on M̄ . Moreover, Θ is atleast C1 and has a
differentiable inverse, which implies it is a diffeomorphism. Finally, since Θ(L) = 1, we have
Θ(M̄) = [0, 1].

Our goal here is to set up a partial differential equation with appropriate boundary
conditions that yield the diffeomorphism Θ as its asymptotically stable steady-state solution.
We begin by setting up the pseudo-localization dynamics for a stationary swarm (for which
the spatial domain M and the density function ρ are fixed). Let X : R × M̄ → R be such
that (t, x) 7→ X(t, x) ∈ R, with:

∂tX =
1

ρ
∂x

(
∂xX

ρ

)
,

X(t, 0) = α(t), X(t, L) = β(t), X(0, x) = X0(x),

α̇(t) = −α(t), β̇(t) = 1− β(t),

(6)

where α : R → R is a control input at the boundary x = 0 and β : R → R is a control input

at the boundary x = L. From (5), we observe that ∂x

(
∂xΘ
ρ

)
= 0. Letting w = X−Θ denote

the error, we obtain:

∂tw =
1

ρ
∂x

(
∂xw

ρ

)
,

d

dt
w(t, 0) = −w(t, 0),

d

dt
w(t, L) = −w(t, L), w(0, x) = X0(x)−Θ(x).

(7)
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Assumption 2. (Well-posedness of the pseudo-localization dynamics). We assume that the
pseudo-localization dynamics (6) (and (7)) is well-posed, that the solution is sufficiently
smooth (at least C2 in the spatial variable, even as t → ∞) and belong to the Sobolev
space H1(M).

Lemma 8. (Pointwise convergence to diffeomorphism). Under Assumption 2, on the well-
posedness of the pseudo-localization dynamics, and Assumption 1 on the boundedness of ρ,
the solutions to PDE (6) converge pointwise to the CDF diffeomorphism Θ defined in (5),
as t→∞, for all C2 initial conditions X0.

In this case, the swarm is stationary, which implies that the distribution ρ is fixed (and so
is its support M̄), and the uniform boundedness assumption 1 simply becomes a boundedness
assumption.

Proof. We prove that the solutions to the PDE (6) converge pointwise to the diffeomor-
phism Θ by showing that w → 0, as t → ∞, pointwise for (7). For this, we consider a
functional V , given by (integrations are with respect to the Lebesgue measure):

V =
1

2

∫

M
ρ|w|2 +

1

2

∫

M

1

ρ
|∂xw|2.

The time derivative V̇ is given by:

V̇ =

∫

M
ρw(∂tw) +

∫

M

1

ρ
(∂xw)(∂t∂xw).

Here, replace ∂tw in the first integral with the dynamics in (7), and then use ∂t∂x = ∂x∂t in
the second integral together with the Divergence Theorem in Lemma 1. We obtain:

V̇ =

∫

M
w∂x

(
∂xw

ρ

)
−
∫

M
∂x

(
∂xw

ρ

)
∂tw +

∂xw

ρ
∂tw

∣∣∣∣
L

− ∂xw

ρ
∂tw

∣∣∣∣
0

= −
∫

M

1

ρ
|∂xw|2 −

∫

M

1

ρ

∣∣∣∣∂x
(
∂xw

ρ

)∣∣∣∣
2

+
w + ∂tw

ρ
∂xw

∣∣∣∣
L

− w + ∂tw

ρ
∂xw

∣∣∣∣
0

.

(After the second equal sign, apply again the Divergence Theorem on the first integral of the
previous line, and replace ∂tw from (7).) Substituting from (7), we have:

V̇ = −
∫

M

1

ρ
|∂xw|2 −

∫

M

1

ρ

∣∣∣∣∂x
(
∂xw

ρ

)∣∣∣∣
2

.

Clearly, V̇ ≤ 0, and w(t, ·) ∈ H1(M), for all t. Moreover, since V (t) ≤ V (0) and since ρ is
uniformly bounded according to Assumption 1, we have that w(t, ·) is bounded in H1(M).
Moreover, by the Rellich-Kondrachov Theorem of Lemma 4, H1(M) is compactly contained
in L2(M). Then it follows that the solutions w(t, ·) are precompact. Thus, by the LaSalle
Invariance Principle of Lemma 5, the solution to (7) converges in L2-norm to the largest invari-
ant subset of V̇ −1(0). Note that V̇ = 0 implies

∫
M

1
ρ |∂xw|2 = 0. Thus, limt→∞

∫
M

1
ρ |∂xw|2 =

0. Since ρ is bounded (sup ρ < ∞), we have limt→∞
1

sup ρ

∫
M |∂xw|2 ≤ limt→∞

∫
M

1
ρ |∂xw|2 =

0, which implies limt→∞
∫
M |∂xw|2 = limt→∞ ‖∂xw‖2L2(M) = 0. Now, limt→∞ |w(t, x)| =

10



limt→∞ |w(t, 0) +
∫ x

0 ∂xw(t, ·)| ≤ limt→∞ |w(t, 0)| +
∫ x

0 |∂xw(t, ·)| ≤ limt→∞ |w(t, 0)| +√
L(t)‖∂xw(t, ·)‖L2(M) = 0 (since limt→∞w(t, 0) = 0 and limt→∞ ‖∂xw(t, ·)‖L2(M) = 0).

Thus, limt→∞w(t, x) = 0, for all x ∈ M . Therefore, the solutions to (7) converge to w ≡ 0
pointwise, as t→∞, from any smooth initial w0 = X0 −Θ.

We now have that the solution to the pseudo-localization dynamics converges to the
diffeomorphism Θ in the stationary case. For the dynamic case, we modify (6) to account for
agent motion. Let X : R × R → R be supported on M̄(t) = [0, L(t)] for all t ≥ 0. Using the
relation dX

dt = ∂tX + v∂xX, where v is the velocity field on the spatial domain, we consider:

∂tX =
1

ρ
∂x

(
∂xX

ρ

)
− v∂xX,

X(t, 0) = 0, X(t, L(t)) = β(t), X(0, x) = X0(x).

(8)

In the dynamic case, and w.l.o.g. we have set α(t) = 0 for all t ≥ 0, for simplicity. We will
use the above PDE system in the design of the distributed motion control law, redesigning
the boundary control β to achieve convergence of the entire system. We now discretize (8)
to obtain a distributed pseudo-localization algorithm. Let Xi(t) = X(t, xi), where xi ∈ M̄(t)
is the position of the ith agent. We identify the agent i with its desired coordinate in the
unit interval at time t, i.e., Θ(t, x) = θ ∈ [0, 1], where Θ(t, x) =

∫ x
0 ρ(t, x̄)dx̄ from (5),

which now shows the time dependency of ρ. In this way, ρ(t, x) = ∂xΘ(t, x). It follows that
∂x(·) = ∂θ(·)∂xθ = ∂θ(·)ρ. Therefore, 1

ρ∂x(·) = ∂θ(·). From (8), we have:

dX

dt
= ∂tX + v∂xX =

1

ρ
∂x

(
∂xX

ρ

)
= ∂θ (∂θX) =

∂2X

∂θ2
. (9)

Now, we discretize (9) with the consistent finite differences dX
dt ≈

Xi(t+1)−Xi(t)
∆t and ∂2X

∂θ2
≈

Xi+1−2Xi+Xi−1

(∆θ)2
(that is, we have that lim∆t→0

Xi(t+1)−Xi(t)
∆t = dX

dt and that

lim∆θ→0
Xi+1−2Xi+Xi−1

(∆θ)2
= ∂2X

∂θ2
). Now, with the choice 3∆t = (∆θ)2, and from (8), we

obtain for i ∈ S \ {l, r}:

Xi(t+ 1) =
1

3
(Xi−1(t) +Xi(t) +Xi+1(t)) ,

Xl(t) = 0, Xr(t) = β(t), Xi(0) = X0i.
(10)

Equation (10) is the discrete pseudo-localization algorithm to be implemented synchronously
by the agents in the swarm, starting from any initial condition X0. The leftmost agent
holds its value at zero while the rightmost agent implements the boundary control β. In the
following section we analyze its behavior together with that of the dynamics on ρ.

4.2 Distributed density control law and analysis

In this subsection, we propose a distributed feedback control law to achieve ρ → ρ∗ and
w → 0, as t→∞, through a distributed control input v and a boundary control β. We refer
the reader to [25] for an overview of Lyapunov-based methods for stability analysis of PDE
systems.
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From (3) and (8), we have the dynamics:

∂tρ = −∂x(ρv),

∂tX =
1

ρ
∂x

(
∂xX

ρ

)
− v∂xX,

X(t, 0) = 0, X(t, L(t)) = β(t), X(0, x) = X0(x).

(11)

This realizes the feedback interconnection of Figure 1.

Assumption 3. (Well-posedness of the full PDE system). We assume that (11) is well posed,
and that the solutions (ρ(t, ·), X(t, ·)) are sufficiently smooth (both in t and x ∈ [0, L(t)]),
satisfy Assumption 1 on the uniform boundedness of ρ and ∂xρ, and are bounded in the
Sobolev space H1((0, 1/dl)).

We also assume that the agent at position x at time t is able to measure ρ(t, x). However,
the agents in the swarm do not have access to their positions, and therefore cannot access
ρ∗(x), which could be used to construct a feedback law. To circumvent this problem, we
propose a scheme in which the agents use the position identifier or pseudo-localization variable
X to compute p∗ ◦X(t, x), using this as their dynamic set-point. The idea is to then design
a distributed control law and a boundary control law such that ρ→ p∗ ◦X and X → Θ∗, as
t → ∞, to obtain ρ → p∗ ◦ Θ∗ = ρ∗. Recall that the function p∗ is computed offline and is
broadcasted to the agents prior to the beginning of the self-organization process, and that p∗

is assumed to be a Lipschitz function. Consider the distributed control law, defined as follows
for all time t:

v(t, 0) = 0, ∂xv = (ρ− p∗ ◦X)− ∂Xp
∗

ρ(ρ+ p∗ ◦X)
∂x

(
∂xX

ρ

)
, (12)

together with the boundary control law:

X(t, 0) = 0, βt = k

(
2− β(t)− Xx

ρ

∣∣∣∣
L(t)

)
. (13)

We remark again that the agents implementing the control laws (12) and (13) do not require
position information, because for the agent at position x at time t, ρ(t, x) is a measurement,
X(t, x) is the pseudo-localization variable, through which p∗ ◦X(t, x) can be computed.

Theorem 1. (Convergence of solutions). Under the well-posedness Assumption 3, the so-
lutions (ρ(t, ·), X(t, ·)) to (11), under the control laws (12) and (13), converge to (ρ∗,Θ∗),
ρ→ ρ∗ in L2−norm and X → Θ∗ pointwise as t→∞, from any smooth initial condition (ρ0,
X0).

Proof. Consider the candidate control Lyapunov functional V :

V =
1

2

∫ L(t)

0
|ρ− p∗ ◦X|2dx+

1

2

∫ L(t)

0
ρ|w|2dx+

1

2
|w(L(t))|2.

12



Taking the time derivative of V along the dynamics (11), using Lemma 2 on the Leibniz
integral rule, and applying Corollary 1 on the derivative of energy functionals, we obtain:

V̇ =

∫ L(t)

0

(ρ− p∗ ◦X)

(
dρ

dt
− d(p∗ ◦X)

dt

)
dx+

1

2

∫ L(t)

0

|ρ− p∗ ◦X|2∂xv dx

+

∫ L(t)

0

ρw∂tw dx+
1

2

∫ L(t)

0

(∂tρ)|w|2 dx+
1

2
ρ|w|2v

∣∣∣∣
L(t)

0

+ w(L)
dw(L(t))

dt
.

Now, dρ
dt = ∂tρ + v∂xρ = −ρ∂xv (since ∂tρ = −∂x(ρv), from (11)), and ∂tw = 1

ρ∂x

(
∂xw
ρ

)
−

v∂xw. Thus, we obtain:

V̇ =

∫ L(t)

0

(ρ− p∗ ◦X)

[
−ρ∂xv − ∂Xp∗

1

ρ
∂x

(
∂xX

ρ

)]
dx+

1

2

∫ L(t)

0

|ρ− p∗ ◦X|2∂xv dx

+

∫ L(t)

0

w∂x

(
∂xw

ρ

)
dx−

∫ L(t)

0

ρvw∂xw dx− 1

2

∫ L(t)

0

∂x(ρv)|w|2 dx+
1

2
ρ|w|2v

∣∣∣∣
L(t)

0

+ w(L)
dw(L(t))

dt
.

Now, using the above equation, applying the Divergence theorem (2) (integration by parts)
and rearranging the terms, we obtain:

V̇ =− 1

2

∫ L(t)

0
(ρ− p∗ ◦X)

[
(ρ+ p∗ ◦X)(∂xv) +

∂Xp
∗

ρ
∂x

(
∂xX

ρ

)]
dx

+
w∂xw

ρ

∣∣∣∣
L(t)

0

−
∫ L(t)

0

|∂xw|2
ρ

dx−
∫ L(t)

0
ρvw∂xw dx− 1

2
ρv|w|2

∣∣∣∣
L(t)

0

+

∫ L(t)

0
ρvw∂xw dx+

1

2
ρ|w|2v

∣∣∣∣
L(t)

0

+ w(L)
dw(L(t))

dt
.

Since w(0) = 0, the above equation reduces to:

V̇ =− 1

2

∫ L(t)

0
(ρ− p∗ ◦X)

[
(ρ+ p∗ ◦X)(∂xv) +

∂Xp
∗

ρ
∂x

(
∂xX

ρ

)]
dx

−
∫ L(t)

0

|∂xw|2
ρ

dx+ w(L(t))

(
d

dt
w(L(t)) +

∂xw

ρ

)
.

From (12) and (13), we have ∂xv = (ρ − p∗ ◦ X) − ∂Xp
∗

ρ(ρ+p∗◦X)∂x

(
∂xX
ρ

)
, and dw

dt

∣∣∣∣
L(t)

=

−
(
∂xw
ρ + kw

) ∣∣∣∣
L(t)

, and we obtain:

V̇ =− 1

2

∫ L(t)

0

(ρ+ p∗ ◦X)|ρ− p∗ ◦X|2dx−
∫ L(t)

0

|∂xw|2
ρ

dx− k |w(L(t))|2 . (14)

Clearly, V̇ ≤ 0, and ρ(t, ·), w(t, .) ∈ H1((0, 1/dl)), for all t. By Lemma 4, the Rellich-
Kondrachov Compactness Theorem, the spaceH1((0, 1/dl)) is compactly contained in L2((0, 1/dl)),
and the bounded solutions (by Assumption 3) inH1((0, 1/dl)) are then precompact in L2((0, 1/dl)).
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Moreover, the set of (ρ,X) satisfying Assumption 3 is dense in L2((0, 1/dl)). Then, by the
LaSalle Invariance Principle, Lemma 5, we have that the solutions to (11) converge in the L2-
norm to the largest invariant subset of V̇ −1(0). This implies that:

lim
t→∞
‖ρ(t, ·)− p∗ ◦X(t, ·)‖L2((0,L(t))) = 0,

lim
t→∞
‖∂xw
ρ
‖L2((0,L(t)),ρ) = 0, lim

t→∞
w(t, L(t)) = 0.

Thus, we have:

lim
t→∞

∥∥∥∥
∂xw

ρ

∥∥∥∥
L2((0,L(t)),ρ)

= 0 ⇒ lim
t→∞
‖∂xw‖L2((0,L(t))) = 0.

Using the Poincaré-Wirtinger inequality, Lemma 3, again, we note that this implies limt→∞ ‖w−∫ L(t)
0 w‖L2((0,L(t))) = 0. We have limt→∞ |

∫ L(t)
0 w| = |

∫ L(t)
0

∫ x
0 ∂xw| ≤ L(t)3/2‖∂xw‖L2((0,L(t))) =

0, which implies that limt→∞
∫ L(t)

0 w = 0 and therefore limt→∞ ‖w‖L2((0,L(t))) = 0. Thus, we
get limt→∞ ‖w(t, ·)‖H1((0,L(t))) = 0, or in other words, w →H1 0. Now, limt→∞ |w(t, x)| =
limt→∞ |w(t, 0) +

∫ x
0 ∂xw(t, ·)| ≤ limt→∞ |w(t, 0)| +

∫ x
0 |∂xw(t, ·)| ≤ limt→∞ |w(t, 0)| +√

L(t)‖w(t, ·)‖H1((0,L(t))) = 0, which implies that w → 0 pointwise. Given that w = X −Θ,
we have limt→∞X(t, ·)−Θ(t, ·) = 0. Let limt→∞ L(t) = L and limt→∞Θ(t, ·) = Θ̄(·), which
implies that X → Θ̄ pointwise.

From the above, we have limt→∞ ‖ρ(t, ·)−p∗◦Θ̄‖L2((0,L(t))) = limt→∞ ‖ρ(t, ·)−p∗◦X(t, ·)+
p∗ ◦X(t, ·)− p∗ ◦ Θ̄‖L2((0,L(t))) ≤ limt→∞ ‖ρ(t, ·)− p∗ ◦X(t, ·)‖L2((0,L(t))) + ‖p∗ ◦X(t, ·)− p∗ ◦
Θ̄‖L2((0,L(t))) = 0 (this follows from the assumption that p∗ is Lipschitz, since ‖p∗ ◦X − p∗ ◦
Θ̄‖L2 ≤ c‖X − Θ̄‖L2 for some Lipschitz constant c). Thus, we have ρ→L2 p∗ ◦ Θ̄.

Now, we are interested in the limit density function ρ̄ = p∗ ◦ Θ̄, and by the definition
of Θ̄ we have Θ̄(x) =

∫ x
0 ρ̄. We now prove that this limit (ρ̄, Θ̄) is unique, and that (ρ̄, Θ̄) =

(ρ∗,Θ∗). From the definition of Θ̄, we get dΘ̄
dx (x) = ρ̄(x) = p∗(Θ̄(x)) > 0, ∀Θ̄(x) ∈ [0, 1]. We

therefore have:

x =

∫ Θ̄(x)

0
(p∗(θ))−1 dθ.

Recall from the definition of p∗ and (5) that p∗ ◦ Θ∗(x) = ρ∗(x), and d
dxΘ∗(x) = ρ∗(x) =

p∗ ◦Θ∗(x), which implies that dΘ∗

dx = p∗(θ∗) > 0, where θ∗ = Θ∗(x). Therefore:

x =

∫ Θ∗(x)

0
(p∗(θ))−1 dθ.

From the above two equations, we get:

∫ Θ̄(x)

0
(p∗(θ))−1 dθ =

∫ Θ∗(x)

0
(p∗(θ))−1 dθ,

for all x, and since p∗ is strictly positive, it implies that Θ̄ = Θ∗, and we obtain ρ̄ = p∗ ◦ Θ̄ =
p∗ ◦ Θ∗ = ρ∗. And we know that ρ →L2 p∗ ◦ Θ̄ = p∗ ◦ Θ∗ = ρ∗. In other words, ρ converges
to ρ∗ in the L2 norm.
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4.2.1 Physical interpretation of the density control law

For a physical interpretation of the control law, we first rewrite some of the terms in a suitable
form. From (11), we know that:

1

ρ
∂x

(
∂xX

ρ

)
=
∂X

∂t
+ v∂xX =

dX

dt
.

The second term in the expression for ∂xv in the law (12) can thus be rewritten as:

∂Xp
∗

ρ(ρ+ p∗ ◦X)
∂x

(
∂xX

ρ

)
=

1

(ρ+ p∗ ◦X)
∂Xp

∗dX

dt
=

1

(ρ+ p∗ ◦X)

dp∗

dt
.

Now, from above and (12), we obtain:

v(t, x) =

∫ x

0
(ρ− p∗ ◦X)−

∫ x

0

1

(ρ+ p∗ ◦X)

dp∗

dt
. (15)

Equation (15) gives the velocity of the agent at x at time t. Now, to interpret it, we first
consider the case where the pseudo-localization error is zero, that is, when X = Θ∗. This
would imply that p∗ ◦X = p∗ ◦Θ∗ = ρ∗, dX

dt = dΘ∗

dt = 0, and we obtain:

v(t, x) =

∫ x

0
(ρ− ρ∗). (16)

The term
∫ x

0 (ρ − ρ∗) =
∫ x

0 ρ −
∫ x

0 ρ
∗ is the difference between the number of agents in the

interval [0, x] and the desired number of agents in [0, x]. If the term is positive, it implies
that there are more than the desired number of agents in [0, x] and the control law essentially
exerts a pressure on the agent to move right thereby trying to reduce the concentration of
agents in the interval [0, x], and, vice versa, when the term is negative. This eventually
accomplishes the desired distribution of agents over a given interval. This would be the
physical interpretation of the control law for the case where the pseudo-localization error is
zero (that is, the agents have full information of their positions).

However, in the transient case when the agents do not possess full information of their po-
sitions and are implementing the pseudo-localization algorithm for that purpose, the control
law requires a correction term that accounts for the fact that the transient pseudo coordi-
nates X(t, x) cannot be completely relied upon. This is what the second term

∫ x
0

1
(ρ+p∗◦X)

dp∗

dt

in (15) corrects for. When this term is positive, that is,
∫ x

0
1

(ρ+p∗◦X)
dp∗

dt > 0, it roughly im-

plies that the “estimate” of the desired number of agents in the interval [0, x] is increasing
(indicating that an increase in the concentration of agents in [0, x] is desirable), and the term
essentially reduces the “rightward pressure” on the agent (note that this term will have a
negative contribution to the velocity (15)).

4.3 Discrete implementation

In this section, we present a scheme to compute p∗ (the transformed desired density profile)
and a consistent discretization scheme for the distributed control law. We follow that up
with a discussion on the convergence of the discretized system and a pseudo-code for the
implementation.
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4.3.1 On the computation of p∗

We now provide a method for computing p∗ from a given ρ∗ via interpolation. Let the
desired domain M∗ = [0, L∗] be discretized uniformly to obtain M∗d = {0 = x1, . . . , xm = L∗}
such that xj − xj−1 = h (constant step-size). Note that m is the number of interpolation
points, not equal to the number of agents. The desired density ρ∗ : [0, L∗] → R>0 is known,
and we compute the value of ρ∗ on M∗d to get ρ∗(x1, . . . , xm) = (ρ∗1, . . . , ρ

∗
m). We also have

Θ∗(x) =
∫ x

0 ρ
∗dµ, for all x ∈ [0, L∗]. Now, computing the integral with respect to the

Dirac measure for the set M∗d , we obtain Θ∗d(x1, . . . , xm) = (θ∗1, . . . , θ
∗
m), where θ∗1 = 0 and

θ∗k = 1
2

∑k
j=1(ρ∗j−1 + ρ∗j )h, for k = 2, . . . ,m (note that 0 = θ∗1 ≤ θ∗2 ≤ . . . ≤ θ∗m ≤ 1 and

limh→0 θ
∗
m = Θ∗(L∗) = 1). Now, the value of the function p∗ at any X ∈ [0, 1] can be now

obtained from the relation p∗(θ∗k) = ρ∗k, for k = 1, . . . ,m, by an appropriate interpolation.

(ρ∗1, . . . , ρ
∗
m) = p∗(θ∗1, . . . , θ

∗
m)

(x1, . . . , xm) (θ∗1, . . . , θ
∗
m)

ρ∗

Θ∗

p∗

4.3.2 Discrete control law

A discretized pseudo-localization algorithm is given by (10). We now discretize (12) to obtain
an implementable control law for a finite number of agents i ∈ S, and a numerical simulation
of this law is later presented in Section 6.

Let i ∈ S \ {l, r}. First note that ∂xv = (∂θv)

∣∣∣∣
θ=Θ(x)

(∂xΘ) = (∂θv)

∣∣∣∣
θ=Θ(x)

ρ (where v ≡

v(Θ(x))). Using a consistent backward differencing approximation, and recalling that ∆θ = ε,
we can write:

(∂xv)i ≈ ρi
vi − vi−1

∆θ
= ρi

vi − vi−1

ε
, i ∈ S

where ρi is agent i’s density measurement.
From Section 4.1, recall the consistent finite-difference approximation:

1

ρ
∂x

(
∂xX

ρ

)

i

≈ 1

ε2
(Xi−1 − 2Xi +Xi+1).

With κ = 1
2ε , from (12) and the above equation, we obtain the law for agent i as:

vi = vi−1 +
ρi − p∗(Xi)

2κρi
− 2κ

ρi(ρi + p∗(Xi))
· p
∗(Xi+1)− p∗(Xi−1)

Xi+1 −Xi−1
· (Xi−1 − 2Xi +Xi+1) (17)

with vl = 0. The computation in v can be implemented by propagating from the leftmost
agent to the rightmost agent along a line graph Gline (with message receipt acknowledgment).
Note that this propagation can alternatively be formulated by each agent averaging appropri-
ate variables with left and right neighbors, which will result in a process similar to a finite-time

consensus algorithm. Now, the boundary control (13) is discretized (with ∂tβ ≈ β(t+1)−β(t)
∆t ),

with the choice k = 1
ε to:

β(t+ 1) = β(t) + k∆t(2− β(t)− 2κ (β(t)−Xr−1(t))) =
4− 2ε

3
β(t) +

1

3
Xr−1(t) (18)
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4.3.3 On the convergence of the discrete system

The discretized pseudo-localization algorithm (10) with the boundary control law (13), can
be rewritten as:

X(t+ 1) = X(t)− 1

3
LX(t) + u(t), (19)

where X(t) = (Xl(t), . . . , Xr(t)), L is the Laplacian of the line graph Gline and the input
u(t) =

(
0, . . . , 0, ε3(2− β(t))

)
. This discretized system is stable and we thereby have that

the discretized pseudo-localization algorithm is consistent and stable. Thus, by the Lax
Equivalence Theorem [33], the solution of (19) converges to the solution of (8) with the
boundary control (13) as N →∞. Due to the nonlinear nature of the discrete implementation
of the equation in ρ, we are only certain that we have a consistent discrete implementation
in this case (no similar convergence theorem exists for discrete approximations of nonlinear
PDEs.)

Algorithm 1 Self-organization algorithm for 1D environments

1: Input: ρ∗, K (number of iterations), ∆t (time step)
2: Requires:
3: Offline computation of p∗ as outlined in Section 4.3.1
4: Initialization Xi(0) = X0i, vi = 0
5: Leftmost and rightmost agents, l, r, resp., are aware they are at boundary
6: for k := 1 to K do
7: if i = l then
8: agent l holds onto Xl(k) = 0 and vl(k) = 0
9: else if agent i ∈ {l + 1, . . . , r − 1} then

10: agent i receives Xi−1(k) and Xi+1(k) from its left and right neighbors
11: agent i implements the update (10)
12: else if i = r then
13: agent r receives Xr−1(k) from its left neighbor
14: agent r implements the update (18)

15: for i := l to r do
16: agent i computes velocity vi from (17)

17: agent i moves to xi(k + 1) = xi(k) + vi(k)∆t

5 Self-organization in two dimensions

In this section, we present the two-dimensional self-organization problem. Although our
approach to the 2D problem is fundamentally similar to the 1D case, we encounter a problem
in the two-dimensional case that did not require consideration in one dimension, and it is
the need to control the shape of the spatial domain in which the agents are distributed.
We overcome this problem by controlling the shape of the domain with the agents on the
boundary, while controlling the density function of the agents in the interior.

Let M : R ⇒ R2 be a smooth one-parameter family of bounded open subsets of R2, such
that M̄(t) is the spatial domain in which the agents are distributed at time t ≥ 0. Let
ρ : R × R2 → R≥0 be the spatial density function with support M̄(t) for all t ≥ 0; that
is, ρ(t, x) > 0, ∀x ∈ M̄(t), and t ≥ 0. Without loss of generality, we shift the origin to a
point on the boundary of the family of domains, such that (0, 0) ∈ ∂M(t), for all t. Let
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ρ∗ : M∗ → R>0 be the desired density function, where M∗ is the target spatial domain. From
here on, we view M̄ as a one-parameter family of compact 2-submanifolds with boundary
of R2. Just as in the 1D case, the agents do no have access to their positions but know the
true x- and y-directions.

In what follows we present our strategy to solve this problem, which we divide into three
stages for simplicity of presentation and analysis. In the first stage, the agents converge to the
target spatial domain M∗ with the boundary agents controlling the shape of the domain. In
stage two, the agents implement the pseudo-localization algorithm to compute the coordinate
transformation. In the third stage, the boundary agents remain stationary and the agents
in the interior converge to the desired density function. This simplification is performed
under the assumption that, once the agents have localized themselves at a given time, they
can accurately update this information by integrating their (noiseless) velocity inputs. Noisy
measurements would require that these phases are rerun with some frequency; e.g. using fast
and slow time scales as described in Section 3.

5.1 Pseudo-localization algorithm for boundary agents

To begin with, we propose a pseudo-localization algorithm for the boundary agents which
allows for their control in the first stage. To do this, we assume that the agents have a
boundary detection capability (can approximate the normal to the boundary), the ability to
communicate with neighbors immediately on either side along the boundary curve, and can
measure the density of boundary agents.

Let M0 ⊂ R2 be a compact 2-manifold with boundary ∂M0 and let (0, 0) ∈ ∂M0. To
localize themselves, the agents on ∂M0 implement the distributed 1D pseudo-localization
algorithm presented in Section 4.1. This yields a parametrization of the boundary Γ : ∂M0 →
[0, 1), with Γ(0, 0) = 0, such that the closed curve which is the boundary ∂M0 is identified
with the interval [0, 1). We have that, for γ ∈ [0, 1), Γ−1(γ) ∈ ∂M0. For γ ∈ [0, 1), let s(γ)
be the arc length of the curve ∂M0 from the origin, such that s(0) = 0 and limγ→1 s(γ) = l.
We assume that the boundary agents have access to the unit outward normal n(γ) to the
boundary, and thus the unit tangent s(γ).

Let q : [0, l)→ R>0 denote the normalized density of agents on the boundary, such that we

have
∫ l

0 q(s)ds = 1. Now the 1D pseudo-localization algorithm of Section 4.1 serves to provide

a 2D boundary pseudo-localization as follows. Note that ds
dγ = 1

q(γ) , and (dx, dy) = sds, which

implies (dx, dy) = 1
q(γ)s(γ)dγ. Therefore, we get the position of the boundary agent at γ,

(x(γ), y(γ)), as (x(γ), y(γ)) =
∫ γ

0
1

q(γ̄)s(γ̄)dγ̄, and the arc-length s(γ) =
∫ γ

0
1

q(γ̄)dγ̄, which is
discretized by a consistent scheme to obtain:

(xi, yi) =
1

2
∆γ

i−1∑

k=0

(
sk
qk

+
sk+1

qk+1

)
, for i ∈ ∂M0, (20)

and we recall that the agents have access to q and s. The computation of (xi, yi) can be
implemented by propagating from the agent with γi = 0 along the boundary agents in the
direction as γi → 1, along a line graph Gline (with message receipt acknowledgment). Note
that this propagation can alternatively be formulated by each agent averaging appropriate
variables with left and right neighbors, which will result in a process similar to a finite-time
consensus algorithm.
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This way, the boundary agents are localized at time t = 0, and they update their position
estimates using their velocities, for t ≥ 0.

5.2 Pseudo-localization algorithm in two dimensions

In this subsection, we present the pseudo-localization algorithm for the agents in the interior
of the spatial domain. We first describe the idea of the coordinate transformation (diffeomor-
phism) we employ and construct a PDE that converges asymptotically to this diffeomorphism.
We then discretize the PDE to obtain the distributed pseudo-localization algorithm.

The main idea is to employ harmonic maps to construct a coordinate transformation
or diffeomorphism from the spatial domain of the swarm onto the unit disk. We begin the
construction with the static case, where the agents are stationary. Let M ⊆ R2 be a compact,
static 2-manifold with boundary and N = {(x, y) ∈ R2 | (x− 1)2 + y2 ≤ 1} be the unit disk.
The manifolds M and N are both equipped with a Euclidean metric g = h = δ.

First, we define a mapping for the boundary of M . Let Γ : ∂M → [0, 1) be a parametriza-
tion of the boundary of M , as outlined in Section 5.1. Let ξ : M̄ → N be any diffeomorphism
that takes the following form on the boundary of M :

ξ(Γ−1(γ)) = (1− cos(2πγ), sin(2πγ)), γ ∈ [0, 1), (21)

and we know that Γ−1[0, 1) = ∂M .

Now, from Lemma 6, on harmonic diffeomorphisms, there is a unique harmonic diffeo-
morphism, Ψ : M → N , such that Ψ = ξ on ∂M . We know that, by definition, the mapping
Ψ = (ψ1, ψ2) satisfies:

{
∆ψ1 = 0,

∆ψ2 = 0,
for r ∈ M̊,

Ψ = ξ, on ∂M,

(22)

where ∆ is the Laplace operator. Let Ψ∗ be the corresponding map from the target do-
main M∗ to the unit disk N . Now, we define a function p∗ : N → R>0 by p∗ = ρ∗ ◦ (Ψ∗)−1,
the image of the desired spatial density distribution on the unit disk, which is computed of-
fline and is broadcasted to the agents prior to the beginning of the self-organization process.
We later use p∗ to derive the distributed control law which the agents implement.

ρ∗(r) = p∗(Ψ∗(r))

r ∈M∗ Ψ∗(r) ∈ N

ρ∗

Ψ∗

p∗

We now construct a PDE that asymptotically converges to the harmonic diffeomorphism,
which we then discretize to obtain a distributed pseudo-localization algorithm. We use the
heat flow equation as the basis to define the pseudo-localization algorithm, which yields a
harmonic map as its asymptotically stable steady-state solution. We begin by setting up the
system for a stationary swarm, for which the spatial domain is fixed.
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Let M ⊂ R2 be a compact 2-manifold with boundary, N be the unit disk of R2, and
R = (X,Y ) : M → N . The heat flow equation is given by:

{
∂tX = ∆X,

∂tY = ∆Y,
for r ∈ M̊,

R = ξ, on ∂M.

(23)

The heat flow equation has been studied extensively in the literature. For well-known exis-
tence and uniqueness results, we refer the reader to [13].

Lemma 9. (Pointwise convergence of the heat flow equation to a harmonic diffeomorphism).
The solutions of the heat flow equation (23) converge pointwise to the harmonic map satisfy-
ing (22), exponentially as t→∞, from any smooth initial R0 ∈ H1(M)×H1(M).

Proof. Let Ψ be the solution to (22), which is a harmonic map by definition. Let R̃ = R−Ψ
be the error where R = (X,Y ) is the solution to (23). Subtracting (22) from (23), we obtain:

{
∂tX = ∆X,

∂tY = ∆Y,
for r ∈ M̊,

R̃ = 0, on ∂M.

(24)

The Laplace operator ∆ with the Dirichlet boundary condition in (24) is self-adjoint and has
an infinite sequence of eigenvalues 0 < λ1 < λ2 < . . ., with the corresponding eigenfunctions
{φi}∞i=1 forming an orthonormal basis of L2(M) (where φi ∈ L2(M) and ∆φi = λiφi for
all i, with φi = 0 on the boundary) [15]. Let the initial condition be X̃0 =

∑∞
i=1 aiφi and

Ỹ0 =
∑∞

i=1 biφi (where ai and bi are constants for all i). The solution to (24) is then given by
X̃(t, r) =

∑∞
i=1 aie

−λitφi(r) and Ỹ (t, r) =
∑∞

i=1 bie
−λitφi(r). Since λi > 0, for all i, we obtain

limt→∞ X̃(t, r) = 0 and limt→∞ Ỹ (t, r) = 0, for all r ∈ M̄ . Therefore, limt→∞R(t, r) = Ψ(r),
for all r ∈ M̄ , and the convergence is exponential.

We now have a PDE that converges to the diffeomorphism given by (22) for the stationary
case (agents in the swarm are at rest). For the dynamic case, and to describe the algorithm
while the agents are in motion, we modify (23) as follows. Let R = (X,Y ) : R×R2 → R. We
are only interested in the restriction to M(t), R|M(t), at any time t, so we drop the restriction

and just identify R ≡ R|M(t)
. Using the relation dX

dt = ∂tX +∇X · v, where v is a velocity
field, we obtain:

{
∂tX = ∆X −∇X · v,
∂tY = ∆Y −∇Y · v,

for r ∈ M̊(t),

R = ξ, on ∂M(t).

(25)

We now discretize (25) to derive the distributed pseudo-localization algorithm. Now, we have
ρ : R×R2 → R≥0 with support M(t), the density function of the swarm on the domain M(t).
We view the swarm as a discrete approximation of the domain M(t) with density ρ, and the
PDE (25) as approximated by a distributed algorithm implemented by the swarm.

Here, we propose a candidate distributed algorithm, which would yield the heat flow
equation via a functional approximation. Our candidate algorithm is a time-varying weighted
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Laplacian-based distributed algorithm, owing to the connection between the graph Laplacian
and the manifold Laplacian [4]:

Xi(t+ 1) = Xi(t) +
∑

j∈Ni(t)

wij(t)(Xj(t)−Xi(t)), (26)

and a similar equation for Y . We show how to derive next the values for the weights wij(t) ∈
R, for all t. First, the set of neighbors, j ∈ Ni(t), of i at time t, are the spatial neighbors of i in
M(t), that is, Ni(t) = {j ∈ S | ‖rj(t)−ri(t)‖ ≤ ε} ≡ Bε(ri(t)). Using Xi(t+1)−Xi(t) = dX

dt δt,
for a small δt, we make use of a functional approximation of (26):

dX

dt
δt =

∫

Bε(ri(t))
w(t, ri, s)(X(t, s)−X(t, ri)) ρ(t, s)dµ, (27)

where dν = ρ dµ is a density-dependent measure on the manifold, and the weighting function
w satisfies w(t, ri(t), rj(t)) = wij(t), for all i, j ∈ S. We note that the summation term in
(26) is a special form of the integral in (27) with a Dirac measure dν supported on the set
{r1(t), . . . , rN (t)} at time t. Now, with the choice w(t, ri, s) = 1∫

Bε(s(t))
ρ(t,̄s)dµ

and for very

small ε (making O(ε3) terms negligible), (27) reduces to:

dX

dt
δt = a∆X,

where a = 1
4ε

∫
Bε(ri(t))

(s− ri(t)) · (s− ri(t))dµ is a constant. Now, with the choice δt = a, we
obtain:

dX

dt
=
∂X

∂t
+ v · ∇X = ∆X,

which is the PDE (25). Let d(t, ri(t)) =
∫
Bε(ri(t))

ρ(t, s)dµ and di(t) = |Ni(t)|, for i ∈ S.

Substituting wij(t) = w(t, ri(t), rj(t)) = 1∫
Bε(rj(t))

ρ(t,̄s)dµ
= 1

d(t,rj(t))
≈ 1

dj(t)
, in (26), we get the

distributed pseudo-localization algorithm for the agents in the interior of the swarm to be:

Xi(t+ 1) = Xi(t) +
∑

j∈Ni(t)

1

dj(t)
(Xj(t)−Xi(t)),

Yi(t+ 1) = Yi(t) +
∑

j∈Ni(t)

1

dj(t)
(Yj(t)− Yi(t)).

(28)

For the agents on the boundary ∂M(t), we have:

Ri = (Xi, Yi) = ξi,

where ξi = ξ(ri(t)), for ri(t) ∈ ∂M(t). Note that the discretization scheme is consistent, in
that as the number of agents N →∞, the discrete equation (28) converges to the PDE (25).
In this way, from (28), the pseudo-localization algorithm is a Laplacian-based distributed
algorithm, with a time-varying weighted graph Laplacian.
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5.3 Distributed density control law and analysis

In this section, we derive the distributed feedback control law to converge to the desired
density function over the target domain in the two-dimensional case. The swarm dynamics
are given by:

∂tρ = −∇ · (ρv), for r ∈ M̊(t),

∂tr = v, on ∂M(t).
(29)

Assumption 4. (Well-posedness of the PDE system). We assume that (29) is well-posed,
and that its solution ρ(t, ·) is sufficiently smooth and is bounded in the Sobolev space H1(∪tM(t)),
the components of the velocity field v are bounded in the Sobolev space H1(∪tM(t)) and of
the parametrized velocity on the boundary are bounded in the Sobolev space H1((0, 1)).

In what follows, we describe the control strategy based on three different stages.

5.3.1 Stage 1

In this stage, the objective is for the swarm to converge to the target spatial domain M∗.
Let r∗ : [0, 1] → ∂M∗ be the closed curve describing the desired boundary. Let e(γ) =

r(γ) − r∗(γ) be the position error of agent γ on the boundary, where r(γ) is the actual
position of agent γ computed as presented in Section 5.1. We define a distributed control
law for swarm motion as follows:

{
v = −∇ρρ , for r ∈ M̊(t),

∂tv = −e− v, on ∂M(t).
(30)

Theorem 2. (Convergence to the desired spatial domain). Under the well-posedness Assump-
tion 4, the domain M(t) of the system (29), with the distributed control law (30) converges to
the target spatial domain M∗ as t→∞, from any initial domain M0 with smooth boundary.

Proof. We consider an energy functional E given by:

E =
1

2

∫

∂M(t)
|e|2 +

1

2

∫

∂M(t)
|v|2.

Its time derivative, Ė, using (30), is given by:

Ė =

∫

∂M(t)
e · v +

∫

∂M(t)
v · ∂tv =

∫

∂M(t)
(e + v) · ∂tv = −

∫

∂M(t)
|v|2.

Clearly, Ė ≤ 0, and considering a parametrization of ∂M(t) by the interval [0, 1), we have
v(t, ·) ∈ H1((0, 1)) and bounded. By Lemma 4, the Rellich-Kondrachov Compactness the-
orem, H1((0, 1)) is compactly contained in L2((0, 1)) (and we also have that H1((0, 1)) is
dense in L2((0, 1))). Thus, by the LaSalle Invariance Principle, Lemma 5, we have that the
solutions to (29) with the control law (30) converge in the L2-norm to the largest invariant
subset of Ė−1(0), which satisfies:

lim
t→∞
‖|v|‖L2(∂M(t)) = 0, lim

t→∞
∂t‖|v|‖L2(∂M(t)) = lim

t→∞

∫

∂M(t)
v · ∂tv = 0.
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The set Ė−1(0) is characterized by the first equality above and the second equality is fur-
ther satisfied by the invariant subset of Ė−1(0). We know from (30) that ∂tv = −e − v
on ∂M(t), which upon multiplying on both sides by v, integrating over ∂M(t) and applying
the previous equality on the integral of v · ∂tv, yields limt→∞

∫
∂M(t) e · v = 0. Now, we have

|∂tv|2 = |e|2 + |v|2 + 2e ·v, which on integrating over ∂M(t) yields limt→∞ ‖|∂tv|‖L2(∂M(t)) =
limt→∞ ‖|e|‖L2(∂M(t)). By multiplying ∂tv = −e − v on both sides by ∂tv, integrating over
∂M(t), and using the Cauchy-Schwarz inequality, we obtain:

lim
t→∞
‖|∂tv|‖2L2(∂M(t)) = lim

t→∞
−
∫

∂M(t)
e · ∂tv ≤ lim

t→∞

∫

∂M(t)
|e||∂tv|

≤ lim
t→∞
‖|e|‖L2(∂M(t))‖|∂tv|‖L2(∂M(t)) = lim

t→∞
‖|∂tv|‖2L2(∂M(t))

In this way, the Cauchy-Schwarz inequality becomes an equality, which implies that
limt→∞

∫
∂M(t) [|e||∂tv| − (−e) · ∂tv] = 0 (since the integrand is non-negative and its inte-

gral is zero, it is zero almost everywhere), thus limt→∞ ∂tv = − limt→∞ e almost everywhere
(a.e.) on the boundary, and, in turn, implies that limt→∞ v = 0 a.e. on the boundary (since
∂tv = −e − v and limt→∞ ∂tv = − limt→∞ e). From here, and owing to the Invariance
Principle, we have limt→∞ ∂tv = 0 = limt→∞ e a.e. on the boundary. Thus, we have that
limt→∞M(t) = M∗.

5.3.2 Stage 2

Here, the agents in the swarm implement the pseudo-localization algorithm presented in Sec-
tion 5.2. Since the agents are distributed across the target spatial domain M∗, implementing
the pseudo-localization algorithm yields the coordinate transformation Ψ∗ characteristic of
the domain M∗. We therefore have ∂tΨ

∗ = 0, which implies that dΨ∗

dt = ∂tΨ
∗ +∇(Ψ∗)v =

∇(Ψ∗)v, which will be used in Stage 3.

5.3.3 Stage 3

In this stage, the boundary agents of the swarm remain stationary and interior agents converge
to the desired density function.

Consider the distributed control law, defined as follows for all time t:
{
dv
dt = −ρ∇(ρ− p∗ ◦Ψ∗) + (v · ∇)v + ∆v − v, for r ∈ M̊∗,
v = 0, on ∂M∗,

(31)

where dv
dt at r ∈M is the acceleration of the agent at r, the control input. Using the relation

d
dt = ∂t + v · ∇, it follows from (31) that ∂tv = −ρ∇(ρ− p∗ ◦Ψ∗) + ∆v − v.

Theorem 3. (Convergence to the desired density). The solutions ρ(t, ·) to (29) for the fixed
domain M∗, under the distributed control law (31) and the well-posedness Assumption 4,
converge to the desired density distribution ρ∗ in the L2-norm as t→∞.

Proof. We consider an energy functional E given by:

E =
1

2

∫

M∗
|ρ− p∗ ◦Ψ∗|2 +

1

2

∫

M∗
|v|2.
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Using Corollary 1, to compute the derivative of energy functionals, we obtain Ė (letting
∇̄ = (∂X , ∂Y )) as follows:

Ė =

∫

M∗
(ρ− p∗ ◦Ψ∗)

(
dρ

dt
− d(p∗ ◦Ψ∗)

dt

)
+

1

2

∫

M∗
|ρ− p∗ ◦Ψ∗|2∇ · v +

∫

M∗
v · ∂tv

= −
∫

M∗
(ρ− p∗ ◦Ψ∗)

(
ρ∇ · v + ∇̄p∗ · dΨ∗

dt

)
+

1

2

∫

M∗
|ρ− p∗ ◦Ψ∗|2∇ · v +

∫

M∗
v · ∂tv

= −1

2

∫

M∗
(ρ2 − (p∗ ◦Ψ∗)2)∇ · v −

∫

M∗
(ρ− p∗ ◦Ψ∗)∇̄p∗ · dΨ∗

dt
+

∫

M∗
v · ∂tv,

where, to obtain the third equality, we expand the square |ρ−p∗ ◦Ψ∗|2 in the second integral
of the second equality. Since v = 0 on ∂M∗ and from Section 5.3.2, we have dΨ∗

dt = ∇(Ψ∗)v,
we obtain:

Ė =
1

2

∫

M∗
∇(ρ2 − (p∗ ◦Ψ∗)2) · v −

∫

M∗
(ρ− p∗ ◦Ψ∗)∇̄p∗ · (∇Ψ∗v) +

∫

M∗
v · ∂tv.

We have ∇̄p∗∇Ψ∗ = ∇(p∗ ◦Ψ∗), and ∇(ρ2− (p∗ ◦Ψ∗)2) = (ρ− p∗ ◦Ψ∗)∇(ρ+ p∗ ◦Ψ∗) + (ρ+
p∗ ◦Ψ∗)∇(ρ− p∗ ◦Ψ∗). Thus, we get:

Ė =
1

2

∫

M∗
(ρ+ p∗ ◦Ψ∗)∇(ρ− p∗ ◦Ψ∗) · v +

1

2

∫

M∗
(ρ− p∗ ◦Ψ∗)∇(ρ+ p∗ ◦Ψ∗) · v

−
∫

M∗
(ρ− p∗ ◦Ψ∗)∇(p∗ ◦Ψ∗) · v +

∫

M∗
v · ∂tv.

We therefore get:

Ė =

∫

M∗
ρ∇(ρ− p∗ ◦Ψ∗) · v +

∫

M∗
v · ∂tv =

∫

M∗
v · (ρ∇(ρ− p∗ ◦Ψ∗) + ∂tv) .

From (31), we have ∂tv = −ρ∇(ρ− p∗ ◦Ψ∗) + ∆v − v, and we obtain:

Ė = −
∫

M∗
|v|2 −

∫

M∗
|∇vx|2 −

∫

M∗
|∇vy|2.

Clearly, Ė ≤ 0, with ρ(t, .),v ∈ H1(M∗) and bounded (by Assumption 4). By Lemma 4,
the Rellich-Kondrachov Compactness theorem, H1(M∗) is compactly contained in L2(M∗)
(and we also know that the set of all (ρ,v) satisfying Assumption 4 is dense in L2(M∗)).
Thus, by the Invariance Principle, Lemma 5, we have that the solution to (29) converges in
the L2-norm to the largest invariant subset of Ė−1(0), which satisfies:

‖|v|‖H1(M∗) = 0,
1

2
∂t‖|v|‖2L2(M∗) =

∫

M∗
v · ∂tv = 0. (32)

The set Ė−1(0) is characterized by the first equality above and the second equality is further
satisfied by the invariant subset of Ė−1(0). We know from (31) that

∂tv = −ρ∇(ρ− p∗ ◦Ψ∗) + ∆v − v, (33)

which substituted in (32) yields
∫
M∗ ρv · ∇(ρ − p∗ ◦ Ψ∗) = 0. Now, from (33), we obtain

‖|∂tv|‖2L2(M∗) =
∫
M∗ |ρ∇(ρ− p∗ ◦Ψ∗)|2 +

∫
M∗ |v|2 + 2

∫
M∗ ρv · ∇(ρ− p∗ ◦Ψ∗) =

∫
M∗ |ρ∇(ρ−
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p∗ ◦Ψ∗)|2; that is, ‖|∂tv|‖L2(M∗) = ‖|ρ∇(ρ− p∗ ◦Ψ∗)|‖L2(M∗). By multiplying (33) by ∂tv on
both sides and applying the Cauchy-Schwarz inequality, we can also get that ‖|∂tv|‖2L2(M∗) =

−
∫
M∗ ρ∂tv · ∇(ρ − p∗ ◦ Ψ∗) ≤

∫
M∗ |∂tv||ρ∇(ρ − p∗ ◦ Ψ∗)| ≤ ‖|∂tv|‖L2(M∗)||ρ∇(ρ − p∗ ◦

Ψ∗)|‖L2(M∗) = ‖|∂tv|‖2L2(M∗). Thus, the Cauchy-Schwarz inequality is in fact an equality,

which implies that ∂tv = −ρ∇(ρ − p∗ ◦ Ψ∗) almost everywhere in M∗, which, from (33)
implies in turn that v = 0 a.e. in M∗. It thus follows that ∂tv = 0 and ∇(ρ − p∗ ◦ Ψ∗) = 0
a.e in M∗, and therefore ρ − p∗ ◦ Ψ∗ is constant a.e. in M∗. Using the Poincare-Wirtinger
inequality, Lemma 3, we obtain that ‖(ρ−p∗◦Ψ∗)−(ρ−p∗◦Ψ∗)M∗‖ ≤ C‖∇(ρ−p∗◦Ψ∗)‖ = 0,
where (ρ − p∗ ◦ Ψ∗)M∗ = 1

|M∗|
∫
M∗(ρ − p∗ ◦ Ψ∗). Since

∫
M∗ ρ =

∫
N p
∗ =

∫
M∗ p

∗ ◦ Ψ∗ = 1, we

have that (ρ− p∗ ◦Ψ∗)M∗ = 0, and therefore ‖ρ− p∗ ◦Ψ∗‖L2(M∗) = 0.

5.3.4 Robustness of the distributed control law

The self-organization algorithm in 2D has been divided into three stages, where asymptotic
convergence is achieved in each stage (with exponential convergence in the second stage). We
now present a robustness result for convergence in Stage 3 under incomplete convergence in
the preceding stages.

Lemma 10. (Robustness of the control law). For every δ > 0, there exist T1, T2 < ∞ such
that when Stages 1 and 2 are terminated at t1 > T1 and t2 > T2 respectively, we have that
limt→∞ ‖ρ(t, ·)− ρ∗‖L2(M(t1)) < δ.

Proof. In Stage 1, it follows from Theorem 2 on the convergence to the desired spatial domain
that limt→∞M(t) = M∗. Then for every ε1 > 0, we have T1 <∞, such that dH(M(t),M∗) <
ε1 for all t > T1, where dH is the Hausdorff distance between two sets; see (1). (Note that any
appropriate notion of distance can alternatively be used here.) Let Stage 1 be terminated
at t1 > T1, which implies that the swarm is distributed across the domain M(t1). In Stage 2,
it follows from Lemma 9 on the convergence of the heat flow equation to the harmonic map,
that for a domain M(t1), we have that limt→∞R(t, ·) = ΨM(t1) pointwise, where ΨM(t1) is the
harmonic map from M(t1) to N (the unit disk). Then, for every ε2 > 0, we have a T2 <∞,
such that ‖R(t, ·)−ΨM(t1)‖∞ < ε2 for all t > T2. Let Stage 2 be terminated at t2 > T2, which
implies that the map from the spatial domain to the disk is R(t2, ·). In Stage 3, it follows from
the arguments in the proof of Theorem 3 (on the convergence to the desired density function)
that limt→∞ ρ(t, ·) = p∗ ◦R(t2, ·) a.e. in M(t1) if the map at the end of Stage 2 is R(t2, ·).
We characterize the error as limt→∞ ‖ρ − ρ∗‖L2(M(t1)) = ‖p∗ ◦R(t2, ·) − p∗ ◦ Ψ∗‖L2(M(t1)) =
‖p∗◦R(t2, ·)−p∗◦ΨM(t1)+p

∗◦ΨM(t1)−p∗◦Ψ∗‖L2(M(t1)) ≤ ‖p∗◦R(t2, ·)−p∗◦ΨM(t1)‖L2(M(t1))+
‖p∗◦ΨM(t1)−p∗◦Ψ∗‖L2(M(t1)). Recall that ‖R(t2, ·)−ΨM(t1)‖∞ < ε2, and since p∗ is Lipschitz,
we can get the bound ‖p∗ ◦R(t2)− p∗ ◦ΨM(t1)‖L2(M(t1)) < δ1 = cε2 (where c is the Lipschitz
constant times the area of M(t1)). The harmonic map also depends continuously on its
domain [19], which yields the bound ‖ΨM(t1)−Ψ∗‖∞ < ε3, since dH(M(t1),M∗) < ε1. Thus,
we get another bound ‖p∗ ◦ΨM(t1)−p∗ ◦Ψ∗‖L2(M(t1)) < δ2 = cε3, and that ‖ρ−ρ∗‖L2(M(t1)) <
δ1 + δ2 = δ. Therefore, going backwards, for all δ > 0, we can find T1 and T2 such that the
density error is bounded by δ, when the Stages 1 and 2 are terminated at t1 > T1 and t2 > T2

respectively.
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5.4 Discrete implementation

In this section, we present consistent schemes for discrete implementation of the distributed
control laws (30) and (33), where the key aspect is the computation of spatial gradients
(of ρ in Stage 1, and of ρ, Ψ∗ and the components of velocity v in Stage 3). The network
graph underlying the swarm is a random geometric graph, where the nodes are distributed
according to the density function over the spatial domain. According to this, every agent
communicates with other agents within a disk of given radius (say r) determined by the
hardware capabilities, which reduces to the graph having an edge between two nodes if
and only if the nodes are separated by a distance less than r. We recall the earlier stated
assumption that the agents know the true x- and y-directions.

5.4.1 On the computation of p∗

We first begin with an approach to compute offline the map p∗ via interpolation. Let the
desired domain M∗ ∈ R2 be discretized into a uniform grid to obtain M∗d = {r1, . . . , rm}
(the centers of finite elements, where rk = (xk, yk)). The desired density ρ∗ : M∗ → R>0 is
known, and we compute the value of ρ∗ on M∗d to get ρ∗(r1, . . . , rm) = (ρ∗1, . . . , ρ

∗
m). We also

have Ψ∗(x, y) = (X∗, Y ∗) ∈ N , for all (x, y) ∈M∗. Now, computing the integral with respect
to the Dirac measure for the set M∗d , we obtain Ψ∗(r1, . . . , rm) = (Ψ∗1, . . . ,Ψ

∗
m). The value

of the function p∗ at any (X,Y ) ∈ N can be obtained from the relation p∗(Ψ∗1, . . . ,Ψ
∗
m) =

ρ∗(r1, . . . , rm) for k = 1, . . . ,m by an appropriate interpolation.

(ρ∗1, . . . , ρ
∗
m) = p∗(Ψ∗1, . . . ,Ψ

∗
m)

(r1, . . . , rm) (Ψ∗1, . . . ,Ψ
∗
m)

ρ∗

Ψ∗

p∗

Commutative diagram

5.4.2 Discrete control law

As stated earlier, for the discrete implementation of the distributed control laws (30) and (33),
the key aspect is the computation of spatial gradients (of ρ in Stage 1, and of ρ, Ψ∗ and the
components of velocity v in Stage 3). In the subsequent sections we present two alternative,
consistent schemes for computing the spatial gradient (of any smooth function, with the
above being the ones of interest), one using the Jacobian of the harmonic map and the other
without it.

Computing the Jacobian of the harmonic map

Let J(r) = ∇Ψ(r) be the (non-singular) Jacobian of the harmonic diffeomorphism Ψ : M →
N . When the steady-state is reached in the pseudo-localization algorithm (28) (i.e., Xi(t +
1) = Xi(t) = ψi1 and Yi(t+ 1) = Yi(t) = ψi2), we have, ∀ i ∈ S:

∑

j∈Ni

1

dj
(ψj1 − ψi1) = 0,

∑

j∈Ni

1

dj
(ψj2 − ψi2) = 0,
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where i is the index of the agent located at r ∈M and Ni is the set of agents in a disk-shaped
neighborhood Bε(r) of area ε centered at r. Rewriting the above, we get, ∀ i ∈ S:

ψi1 =

∑
j∈Ni

1
dj
ψj1∑

j∈Ni
1
dj

, ψi2 =

∑
j∈Ni

1
dj
ψj2∑

j∈Ni
1
dj

. (34)

We assume that the agents have the capability in their hardware to perturb the disk of
communication Bε(r) (by moving an antenna, for instance). The Jacobian J = ∇Ψ ,
where Ψ = (ψ1, ψ2) is computed through perturbations to Ni (i.e., the neighborhood Bε(r))
and using consistent discrete approximations:

∂xψ1 ≈
ψ1(r + δxe1)− ψ1(r)

δx
, ∂yψ1 ≈

ψ1(r + δye2)− ψ1(r)

δy
,

and similarly for ψ2. Now, ψ1(r + δxe1) is computed as in (34) for N δx
i , the set of agents

in Bε(r + δxe1) and ψ1(r + δye2) from Bε(r + δye2).

Computing the spatial gradient of a smooth function using the Jacobian of Ψ

Let ∇ = (∂x, ∂y) and ∇̄ = (∂ψ1 , ∂ψ2), where Ψ = (ψ1, ψ2). We have ∂x = (∂xψ1)∂ψ1 +
(∂xψ2)∂ψ2 and ∂y = (∂yψ1)∂ψ1 + (∂yψ2)∂ψ2 . Therefore, ∇ = J>∇̄. For a smooth function
f : M → R, we have, ∇f = J>∇̄f , and the agents can numerically compute ∇̄ by:

(
∂f

∂ψ1

)

i

≈ 1

|Ni|
∑

j∈Ni

fj − fi
ψj1 − ψi1

,

(
∂f

∂ψ2

)

i

≈ 1

|Ni|
∑

j∈Ni

fj − fi
ψj2 − ψi2

,

where i is the index of the agent located at r ∈M and Ni is the set of agents in a ball Bε(r).

Computing the spatial gradient of a smooth function without the Jacobian of Ψ

In the absence of a Jacobian estimate, we use the following alternative method for computing
an approximate spatial gradient estimate of a smooth function. This is used in Stage 1 of
the self-organization process.

Let f̄(r) be the mean value of f over a ball Bε(r):

f̄(r) =
1

ε

∫

Bε(r)

fdµ ≈ 1

|Ni|
∑

j∈Ni

fj .

We have:

1

ε

∂f̄

∂x
≈ 1

ε

f̄(r + δxe1)− f̄(x)

δx
=

1

ε

∫
Bε(r+δxe1)

fdµ−
∫
Bε(r)

fdµ

δx

=
1

ε

∫

Bε(r)

(f(r + δxe1)− f(r))

δx
dµ ≈ 1

ε

∫

Bε(r)

∂f

∂x
dµ =

(
∂f

∂x

)
.

Similarly,

1

ε

∂f̄

∂y
≈ 1

ε

f̄(r + δye2)− f̄(x)

δy
≈
(
∂f

∂y

)
.
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In all, for any scalar function f , each agent can use the approximation:

(∇f)i ≈
((

∂f

∂x

)
,

(
∂f

∂y

))
=

1

ε

(
∂f̄

∂x
,
∂f̄

∂y

)
, (35)

to estimate of the gradient ∇f .

5.4.3 On the convergence of the discrete system

We have noted earlier that the pseudo-localization algorithm (28) satisfies the consistency
condition in that as N → ∞, Equation (28) converges to the PDE (25). The pseudo-
localization algorithm is also essentially a weighted Laplacian-based distributed algorithm
that is stable. Thus, by the Lax Equivalence theorem [33], the solution of (28) converges to
the solution of (25) as N → ∞. However, for the distributed control laws in Stages 1-3, we
are only able to provide consistent discretization schemes. The dynamics of the swarm (29)
with the control laws (30) and (31) are nonlinear for which is no equivalent convergence
theorem. Further analysis to determine convergence is required, which falls out the scope of
this present work.

Algorithm 2 Self-organization algorithm for 2D environments

1: Input: M∗, ρ∗ and k1, k2, K (number of iterations for each stage), ∆t (time step)
2: Requires:
3: Offline computation of p∗ similar to the outline in Section 4.3.1
4: Boundary agents are aware of being at boundary or interior of domain, can
5: communicate with others along the boundary, can approximate the normal
6: to the boundary, and can measure density of boundary agents,
7: Agents have knowledge of a common orientation of a reference frame
8: Initialize: ri (Agent positions), vi = 0 (Agent velocities)
9: Boundary agents localize as outlined in Section 5.1

10: Stage 1:
11: for k := 1 to k1 do
12: if agent i is at the interior of domain then
13: compute vi(k) = − (∇ρ)i

ρi
(k) from (30)

14: move ri(k + 1) = ri(k) + vi(k)∆t
15: else if agent i is at the boundary of domain then
16: compute vi(k+1) = vi(k)−(ri(k)−r∗i (k)+vi(k))∆t from (30), and move ri(k+1) = ri(k)+vi(k)∆t

17: End Stage 1
18: Stage 2:
19: Boundary agents map themselves onto unit circle according to (21)
20: for k := 1 to k2 do
21: for agent i in the interior do
22: compute Xi(k + 1), Yi(k + 1) according to (28)

23: Stage 3:
24: for k := 1 to K do
25: for agent i in the interior do
26: compute vi(k+ 1) = vi(k) + (−ρi(k)(∇(ρ− p∗ ◦Ψ∗))i(k) + (vi(k) · ∇)vi(k)− vi(k))∆t from (31) ,

with (∇(ρ− p∗ ◦Ψ∗))i(k) as in (35)
27: update ri(k + 1) = ri(k) + vi(k)∆t
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6 Numerical simulations

In this section, we present numerical simulations of swarm self-organization, that is, of the
control laws presented in Sections 4.2 and of Section 5.3.

6.1 Self-organization in one dimension

In the simulation of the 1D case, we consider a swarm of N = 10000 agents, the desired
density function is given by ρ∗(x) = a sin(x)+b, where a = 1− π

2N and b = 1
N , x ∈

[
0, π2

]
. We

use a kernel-based method to approximate the continuous density function, which is given
by:

ρ(t, r) =
∑

i∈S
K

(‖r− ri(t)‖
d

)
, K(x) =

{
cd
dn , for 0 ≤ x < 1,

0, for x ≥ 1,

is a flat kernel and cd ∈ R>0 is a constant [9]. We discretize the spatial domain with ∆x =
0.001 units, and use an adaptive time step. The self-organization begins from an arbitrary
initial density distribution. Figure 2 shows the initial density distribution, an intermediate
distribution and the final distribution. We observe that there is convergence to the desired
density function, even with noisy density measurements.

Figure 2: Density ρ(x)
plotted against position x

at different instants of
time.

6.2 Self-organization in two dimensions

In the simulation of the 2D case, we first present in Figure 3 the evolution of the boundary
of the swarm in Stage 1, where the swarm converges to the target spatial domain M∗ from
an initial spatial domain. The target spatial domain, a circle of radius 0.5 units, given by
M∗ = {(x, y) ∈ R2 | (x − 0.6)2 + y2 ≤ 0.25}, with the desired density function ρ∗ given by
ρ∗(x, y) = 1

((x−0.4)2+y2)0.3
.

We present in Figures 4 and 5 the result of implementation of the pseudo-localization
algorithm with the steady state distributions of Ψ∗ = (ψ∗1, ψ

∗
2) respectively. We note that

the steady state distribution Ψ∗ as a function of the spatial coordinates (x, y) in this case is
linear.

Next, we focus on Stage 3 of the self-organization process, where the agents already
distributed over the target spatial domain, converge to the desired density function. The
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Figure 3: Evolution of the swarm boundary in Stage 1.

Figure 4: Steady-state distribution of ψ∗1. Figure 5: Steady-state distribution of ψ∗2.

initial density function of the swarm is uniform, and the distributed control law of Stage 3 in
Section 5.3 is implemented. Figure 6 shows the density function at a few intermediate time
instants of implementation and figure 7 shows the spatial density error plot, where e(ρ) =∫
M∗ |ρ− ρ∗|2 is the spatial density error. The results show convergence as desired.

7 Conclusions

In this paper, we considered the problem of self-organization in multi-agent swarms, in one
and two dimensions, respectively. The primary contribution of this paper is the analysis
and design of position and index-free distributed control laws for swarm self-organization
for a large class of configurations. This was accomplished through the introduction of a
distributed pseudo-localization algorithm that the agents implement to find their position
identifiers, which then use in their control laws. The validation of the results for more
general non-simply connected domains will be considered in the future. An extension to this
work will involve the characterization of constraints on the local density function to capture
finite robot sizes and collision avoidance constraints, as well as accounting for possible non-
holonomic constraints on the motion of the robots.
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Figure 6: Evolution of density function in
Stage 3.

Figure 7: Spatial density error
e(ρ) =

∫
M∗ |ρ− ρ∗|2 vs time,
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