Towards Certifiable Data-Driven Systems

Vishaal Krishnan, Abed AlRahman Al Makdah, Fabio Pasqualetti December 13, 2020

Department of Mechanical Engineering, University of California, Riverside

Data-driven systems in the real world

Success of data-driven decision/control systems

Documented failures

Certifiability remains a key challenge

Utilizing dataset to optimize performance on given task

- System design tightly coupled to dataset
- Goal: generalizing to new datapoints

Why data-driven systems fail

A problem of generalization

Pedestrians on crosswalk recognized Pedestrian jaywalking not recognized

Operating conditions unseen in training

Adversarial examples

Sensitivity to "meaningless" perturbations

Meaning not intrinsic to dataset

Approach: Tune sensitivity to all perturbations

Lipschitz constant controls response to perturbations

Lipschitz constant as a robustness certificate

(Low Lipschitz constant \Rightarrow Robust model)

Tuning sensitivity of data-driven models

Lipschitz-regularized learning [Gouk et al., 2018] [Finlay et al., 2018]

Lipschitz constant estimation [Weng et al., 2018] [Fazlyab et al., 2019]

Robustness-constrained learning [Wong et al., 2018] [Pauli et al., 2020]

Tuning sensitivity of data-driven models

Lipschitz constant estimation [Weng et al., 2018] [Fazlyab et al., 2019]

Lipschitz-regularized learning [Gouk et al., 2018] [Finlay et al., 2018] Robustness-constrained learning [Wong et al., 2018] [Pauli et al., 2020]

What's lacking?

- A formal theory of Lipschitz-robust learning
- An understanding of tradeoffs involved
- A unifying framework for design

[Lipschitz-robust learning](#page-9-0)

Lipschitz-robust learning problem:

Minimize (strictly convex) loss with Lipschitz constraint

 $\min_{f \in \text{Lip}} L(f)$ s.t. $lip(f) \leq \alpha$

Lipschitz-robust learning problem:

Minimize (strictly convex) loss with Lipschitz constraint

 $\min_{f \in \text{Lip}} L(f)$ s.t. $lip(f) \leq \alpha$

Theorem (Saddle point)

A unique saddle point (with Lipschitz bound α) exists

1. Stationarity:

$$
\nabla\cdot\left(\lambda\nabla f\right)+\mathbb{E}\left[\partial_{f}L\right]=0
$$

Key insight: Saddle point given by Poisson PDE

 $\nabla \cdot (\lambda \nabla)$ – Laplace operator (λ – Lagrange multiplier)

1. Stationarity:

$$
\nabla\cdot\left(\lambda\nabla f\right)+\mathbb{E}\left[\partial_{f}L\right]=0
$$

Key insight: Saddle point given by Poisson PDE

 $\nabla \cdot (\lambda \nabla)$ – Laplace operator (λ – Lagrange multiplier)

2. Feasibility: $\ln(f) \leq \alpha \qquad \lambda > 0$

1. Stationarity:

$$
\nabla\cdot\left(\lambda\nabla f\right)+\mathbb{E}\left[\partial_{f}L\right]=0
$$

Key insight: Saddle point given by Poisson PDE

 $\nabla \cdot (\lambda \nabla)$ – Laplace operator (λ – Lagrange multiplier)

- 2. Feasibility: $\ln(f) \leq \alpha$ $\lambda > 0$
- 3. Complementary slackness:

$$
\lambda\left(|\nabla f| - \alpha\right) = 0 \quad \text{over domain}
$$

 $\nabla \cdot (\lambda \nabla f) + \mathbb{E} [\partial_f L] = 0$

(steady state temperature profile)

- Map f as temperature profile
- Multiplier λ as conductivity
- Derivative of loss $\partial_f L$ as heat source

 $\nabla \cdot (\lambda \nabla f) + \mathbb{E} [\partial_f L] = 0$

(steady state temperature profile)

- Map f as temperature profile
- Multiplier λ as conductivity
- Derivative of loss $\partial_f L$ as heat source

Sensitivity tuned via Laplacian smoothing

 $\nabla \cdot (\lambda \nabla f) + \mathbb{E} [\partial_f L] = 0$

(steady state temperature profile)

- Map f as temperature profile
- Multiplier λ as conductivity
- Derivative of loss $\partial_f L$ as heat source

Sensitivity tuned via Laplacian smoothing

 $\nabla \cdot (\lambda \nabla f) + \mathbb{E} [\partial_f L] = 0$

(steady state temperature profile)

- Map f as temperature profile
- Multiplier λ as conductivity
- Derivative of loss $\partial_f L$ as heat source

Sensitivity tuned via Laplacian smoothing

- Lipschitz-robust learning \rightarrow Solutions of Poisson-type
- Robustness enforced by Laplacian smoothing
- Active constraint \Rightarrow Tradeoff between accuracy and robustness (property of underlying dataset)
- Lipschitz-robust learning \rightarrow Solutions of **Poisson-type**
- Robustness enforced by Laplacian smoothing
- Active constraint \Rightarrow Tradeoff between accuracy and robustness (property of underlying dataset)

Heat flow-based training algorithms

- 1. Discretize function space to obtain model family
- 2. Heat flow to converge to Lipschitz-robust model

[Algorithm design](#page-21-0)

Domain + Graph

 $Domain + Graph$

Domain partitioned into cells

(colormap)

 $Domain + Graph$

Domain partitioned into cells

Discrete formulation

min $L(f_1,...,f_n)$

s.t. $|f_i - f_j| \leq \alpha |x_i - x_j|$

vertex i – position x_i , value f_i i, j – edge-connected vertices

- Lipschitz \rightarrow Edge constraint
- Edge-Lipschitz bound α
- Smoothing by graph Laplacian

Applying framework to MNIST dataset

Learned map is smoothed by decreasing Lipschitz constant

Accuracy vs robustness

- 1. Lipschitz-robustness \leftrightarrow Laplacian smoothing
- 2. Performance vs robustness tradeoff in learning
- 3. A graph-based robust learning framework

A preliminary diagnosis: tradeoff in learning-based control [Makdah et al., ACC '20]

- Perception-based LQG control
- Uncertainty in sensor noise
- Robustness increases at the expenses of performance

A preliminary diagnosis: tradeoff in learning-based control [Makdah et al., ACC '20]

- Perception-based LQG control
- Uncertainty in sensor noise
- Robustness increases at the expenses of performance

Ongoing:

- Lipschitz-robust learning for control
- Understanding performance vs robustness tradeoff
- Learning $+$ control co-design (not separable)
- Krishnan, Makdah, Pasqualetti Lipschitz bounds and provably robust training by Laplacian smoothing NeurIPS 2020
- Makdah, Katewa, Pasqualetti Accuracy prevents robustness in perception-based control ACC 2020
- Makdah, Katewa, Pasqualetti A fundamental performance limitation for adversarial classification LCSS 2020