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Data-driven systems in the real world

Success of data-driven decision/control systems

fesla Model 3: Autopilot engaged during ", ) N
crash Self-driving Uber car that hit and killed
'woman did not recognize that pedestrians
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Certifiability remains a key challenge



A conceptual model of data-driven systems

Utilizing dataset to optimize performance on given task

Training @ Decision
 —— —_—

Data-driven
system

Dataset

e System design tightly coupled to dataset

e Goal: generalizing to new datapoints



Why data-driven systems fail

A problem of generalization

Pedestrians on crosswalk recognized Pedestrian jaywalking not recognized

Operating conditions unseen in training



The problem is much worse

Adversarial examples

“Stop” Perturbation “Speed limit 45mph”

[Eykholt et al., 2017]

Sensitivity to “meaningless’ perturbations



Sensitivity to perturbations

Meaning not intrinsic to dataset

“Stop” @ ? “Speed limit 45mph”

perturbation

Approach: Tune sensitivity to all perturbations



Lipschitz constant: A sensitivity measure

Lipschitz constant controls response to perturbations

Lipschitz constant as a robustness certificate
(Low Lipschitz constant = Robust model)



Tuning sensitivity of data-driven models

Lipschitz constant estimation
[Weng et al., 2018] [Fazlyab et al., 2019]

Lipschitz-regularized learning Robustness-constrained learning
[Gouk et al., 2018] [Finlay et al., 2018] [Wong et al., 2018] [Pauli et al., 2020]



Tuning sensitivity of data-driven models

Lipschitz constant estimation
[Weng et al., 2018] [Fazlyab et al., 2019]

Lipschitz-regularized learning Robustness-constrained learning
[Gouk et al., 2018] [Finlay et al., 2018] [Wong et al., 2018] [Pauli et al., 2020]

What's lacking?

e A formal theory of Lipschitz-robust learning
e An understanding of tradeoffs involved

e A unifying framework for design



Lipschitz-robust learning




A closer look

Lipschitz-robust learning problem:
Minimize (strictly convex) loss with Lipschitz constraint

in L(f
fmin  L(f)

s.t. lip(f) < «



A closer look

Lipschitz-robust learning problem:
Minimize (strictly convex) loss with Lipschitz constraint

in L(f
fmin L(f)

s.t. lip(f) < «

Theorem (Saddle point)
A unique saddle point (with Lipschitz bound «) exists



A closer look: first-order conditions

1. Stationarity:

V- (AVF) +E[9¢L] =0

Key insight: Saddle point given by Poisson PDE

V - (A\V) — Laplace operator () - Lagrange multiplier)
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A closer look: first-order conditions

1. Stationarity:

V- (AVF) +E[9¢L] =0

Key insight: Saddle point given by Poisson PDE

V - (A\V) — Laplace operator () - Lagrange multiplier)
2. Feasibility: lip(f) < « A>0

3. Complementary slackness:

A(|Vf| —a) =0 over domain



Robustness via Laplacian smoothing

A heat flow analogy e Map f as temperature profile

V- (AVf)+E[0rL] =0 e Multiplier X as conductivity

(steady state temperature profile)

e Derivative of loss 9¢L as heat source
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Key takeaways

e Lipschitz-robust learning — Solutions of Poisson-type
e Robustness enforced by Laplacian smoothing

e Active constraint = Tradeoff between accuracy and robustness
(property of underlying dataset)
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Key takeaways

e Lipschitz-robust learning — Solutions of Poisson-type
e Robustness enforced by Laplacian smoothing

e Active constraint = Tradeoff between accuracy and robustness
(property of underlying dataset)

Heat flow-based training algorithms
1. Discretize function space to obtain model family

2. Heat flow to converge to Lipschitz-robust model
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Algorithm design




A graph-based learning framework

Graph-discretizing the (continuous) input domain

Continuous
domain
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A graph-based learning framework

Graph-discretizing the (continuous) input domain

Sampling
from domain

Continuous
domain
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A graph-based learning framework

Graph-discretizing the (continuous) input domain

- S >
Samphng_ Edge-connecting
from domain spatial neighbors

Continuous
domain
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A graph-based learning framework

Graph-discretizing the (continuous) input domain

Vd
_ — B
Sampling_ Edge-connecting Extract graph W
from domain spatial neighbors

%y
o

Continuous Graph discretization
domain of domain
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A graph-based learning framework

Discretizing the space of functions/maps

Domain + Graph
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A graph-based learning framework

Discretizing the space of functions/maps

Partition

Domain + Graph Domain partitioned
into cells
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A graph-based learning framework

Discretizing the space of functions/maps

Partition

Domain + Graph Domain partitioned Function
into cells (colormap)
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A graph-based learning framework

Discretizing the space of functions/maps

—_—
Partition Functlon
quantization

Domain + Graph Domain partitioned Function

2 Discretized function
into cells (colormap)
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Lipschitz-robust learning on graph

Discrete formulation

(ﬁrj.q.l.?fn) Lh, oo fa) e Lipschitz — Edge constraint

st |fi — fi] < alxi — x| e Edge-Lipschitz bound «
e Smoothing by graph Laplacian

vertex | — position x;, value f;

i,j — edge-connected vertices
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Applying framework to MNIST dataset

) Discretizing

>

digit 4 is close to digit 9 (

input space
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Handwritten digit classification
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Handwritten digit classification

Label: “4”
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Label: “9”
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Handwritten digit classification

Label: “4”

Qouspyuo)

Learned map is smoothed by decreasing Lipschitz constant
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Accuracy vs robustness

100 150 200 250

50

0

« (Lipschitz bound)
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1. Lipschitz-robustness <+ Laplacian smoothing
2. Performance vs robustness tradeoff in learning

3. A graph-based robust learning framework
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Ongoing work: Closed-loop setting

A preliminary diagnosis: tradeoff in learning-based control
[Makdah et al., ACC '20]

0.5

0.4 e Perception-based LQG control
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z 03 © LQG gains e Uncertainty in sensor noise
£ 02 .
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Ongoing work: Closed-loop setting

A preliminary diagnosis: tradeoff in learning-based control
[Makdah et al., ACC '20]

0.5

0.4 e Perception-based LQG control
>
z 03 ® LQG gains | e Uncertainty in sensor noise
£ 02 r .
I e Robustness increases at the

' expenses of performance

0 T T T T T T
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LQ control cost

Ongoing:

e Lipschitz-robust learning for control
e Understanding performance vs robustness tradeoff
e Learning + control co-design (not separable)
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