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Data-driven systems in the real world

Success of data-driven decision/control systems

Documented failures

Certifiability remains a key challenge
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A conceptual model of data-driven systems

Utilizing dataset to optimize performance on given task

• System design tightly coupled to dataset

• Goal: generalizing to new datapoints
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Why data-driven systems fail

A problem of generalization

Pedestrians on crosswalk recognized Pedestrian jaywalking not recognized

Operating conditions unseen in training
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The problem is much worse

Adversarial examples

[Eykholt et al., 2017]

Sensitivity to “meaningless” perturbations
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Sensitivity to perturbations

Meaning not intrinsic to dataset

Approach: Tune sensitivity to all perturbations
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Lipschitz constant: A sensitivity measure

Lipschitz constant controls response to perturbations

Lipschitz constant as a robustness certificate
(Low Lipschitz constant ⇒ Robust model)

6



Tuning sensitivity of data-driven models

Lipschitz constant estimation
[Weng et al., 2018] [Fazlyab et al., 2019]

Lipschitz-regularized learning
[Gouk et al., 2018] [Finlay et al., 2018]

Robustness-constrained learning
[Wong et al., 2018] [Pauli et al., 2020]

What’s lacking?

• A formal theory of Lipschitz-robust learning

• An understanding of tradeoffs involved

• A unifying framework for design
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Lipschitz-robust learning



A closer look

Lipschitz-robust learning problem:
Minimize (strictly convex) loss with Lipschitz constraint

min
f ∈Lip

L(f )

s.t. lip(f ) ≤ α

Theorem (Saddle point)

A unique saddle point (with Lipschitz bound α) exists
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A closer look: first-order conditions

1. Stationarity:

∇ · (λ∇f ) + E [∂f L] = 0

Key insight: Saddle point given by Poisson PDE

∇ · (λ∇) – Laplace operator (λ – Lagrange multiplier)

2. Feasibility: lip(f ) ≤ α λ ≥ 0

3. Complementary slackness:

λ (|∇f | − α) = 0 over domain
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Robustness via Laplacian smoothing

A heat flow analogy

∇ · (λ∇f ) + E [∂f L] = 0
(steady state temperature profile)

• Map f as temperature profile

• Multiplier λ as conductivity

• Derivative of loss ∂f L as heat source

Sensitivity tuned via Laplacian smoothing
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Key takeaways

• Lipschitz-robust learning → Solutions of Poisson-type

• Robustness enforced by Laplacian smoothing

• Active constraint ⇒ Tradeoff between accuracy and robustness
(property of underlying dataset)

Heat flow-based training algorithms

1. Discretize function space to obtain model family

2. Heat flow to converge to Lipschitz-robust model
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Algorithm design



A graph-based learning framework

Graph-discretizing the (continuous) input domain
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A graph-based learning framework

Discretizing the space of functions/maps
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Lipschitz-robust learning on graph

Discrete formulation

min
(f1,...,fn)

L(f1, . . . , fn)

s.t. |fi − fj | ≤ α|xi − xj |

vertex i – position xi , value fi

i , j – edge-connected vertices

• Lipschitz → Edge constraint

• Edge-Lipschitz bound α

• Smoothing by graph Laplacian
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Handwritten digit classification

Applying framework to MNIST dataset

digit 4 is close to digit 9

Discretizing
input space
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Handwritten digit classification

Lip=5

Lip=150

C
onfidence

Label: “4”

Label: “9”
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Handwritten digit classification

Lip=10

Lip=150

C
onfidence

Label: “4”

Label: “9”

Learned map is smoothed by decreasing Lipschitz constant
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Accuracy vs robustness
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Summary

1. Lipschitz-robustness ↔ Laplacian smoothing

2. Performance vs robustness tradeoff in learning

3. A graph-based robust learning framework
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Ongoing work: Closed-loop setting

A preliminary diagnosis: tradeoff in learning-based control
[Makdah et al., ACC ’20]
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• Perception-based LQG control

• Uncertainty in sensor noise

• Robustness increases at the
expenses of performance

Ongoing:

• Lipschitz-robust learning for control
• Understanding performance vs robustness tradeoff
• Learning + control co-design (not separable)
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