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The Setting

System

xk+1 = f (xk ,wk)

yk = h(xk) + vk

Lipschitz:
f , h are Lipschitz-continuous

Noise characteristics:
wk , vk (bounded, i.i.d.)

Optimization-based estimation:
Given data y0:T = (y0, . . . , yT ), get estimates x̂k of xk by an
optimization procedure



Optimization-based Estimation

Full Information Estimation (FIE):

Use all the data within the window 0 : T

Static optimization problem to obtain estimate:

x̂0 = arg min
z0,w,v

J(y0:T , ŷ0:T )

Moving Horizon Estimation (MHE):

Use a moving window of length N << T

At time instant k + N, use data from k + 1 : k + N

Recursive (online) optimization to obtain estimates:

x̂k+1 ∈ arg min
zk+1,w,v

γ(f (x̂k ,wk), zk+1) + J(yk+1:k+N , ŷk+1:k+N)

Prediction + Correction



MHE vs Probabilistic Estimation

MHE is a point estimator

Estimation is fundamentally about dealing with uncertainty
(Initial conditions, Measurement/Process noise)

Estimates are essentially probability distributions, tracking the
distribution is important:
Kalman filter – Mean + Covariance define the distribution in
Linear + Gaussian setting
Bayesian estimation – Updating the prior distribution with
measurements + likelihood to obtain posterior

How about in the moving-horizon setting?
Characterizing the evolution in nonlinear, non-Gaussian
setting is difficult



Objectives of this work

1 Point estimation vs Probabilistic estimation:
A unifying framework for MHE and Bayesian estimation

2 Consistency/Asymptotic stability of MHE:
Connection to classical observability notions
Existing results built on Input-Output-to-State Stability

3 Computational bottleneck in MHE:
A theory of Fast-MHE (consistency, robustness)



Plan

1 Setup the Fast-MHE formulation
(as a point estimator)

2 Lift the point estimator to the space of distributions
(obtain the probabilistic version)

3 Realize the unification principle
(MHE vs Bayes/Particle filter)

4 Establish Observability ⇒ Consistency

5 Characterize robustness



Computational Bottleneck

The recursive formulation:

x̂k+1 ∈ arg min
zk+1,w,v

γ(f (x̂k ,wk), zk+1) + J(yk+1:k+N , ŷk+1:k+N)

Is computationally intensive

Decision variables in optimization – zk+1,w, v
Scales with size of horizon – Need for fast MHE

Fast MHE: Drop w, v from the optimization1

Propagate by noiseless system: xk+1 = f (xk); yk = h(xk)

1Alessandri, Gaggero, TAC 2017



Proximal GD formulation of Fast-MHE

Online proximal gradient descent:

x̂k+1 ∈ arg min
z

1

2
|z − f (x̂k)|2 + ηGk(z)

Gk(z) = J(yk+1:k+N , h ◦ f 1:N(z))
(assume Gk has l-Lipschitz gradient)

Objective function strongly convex for η < 1
l :

x̂k+1 = proxηGk
◦ f (x̂k)

= f (x̂k)− η∇Gk(x̂k+1)

Alternative: Regular gradient descent

x̂k+1 = f (x̂k)− η∇Gk(x̂k)



Fast-MHE in a distributional framework

Lift x̂k+1 = arg minz
1
2 |z − f (x̂k)|2 + ηG (z) to P(X):

(in the space of distributions over state space X)

µk+1 = arg min
ν

1

2
W 2

2 (f#µk , ν) + ηEν [G ]

W2 is the L2-Wasserstein distance



L2-Wasserstein distance

W 2
2 (µ, ν) = inf

π∈Π(µ,ν)

∫
X×X
|x − y |2dπ(x , y)

Optimal transport cost from µ to ν
(w.r.t. Euclidean distance)

Defines a metric on P(X)



Unification of MHE and Bayes

Distributional MHE:

µk+1 = arg min
ν

1

2
W 2

2 (f#µk , ν) + ηEν [G ]

Replace Wasserstein 1
2W

2
2 by a general D:

µk+1 = arg min
ν

D(f#µk , ν) + ηEν [G ]

Observation:
If D = DKL (KL-divergence) – Bayesian estimation
(Implement by Sequential Monte Carlo/Particle filter)



Plan

1 Setup the Fast-MHE formulation
(as a point estimator)

2 Lift the point estimator to the space of distributions
(obtain the probabilistic version)

3 Realize the unification principle
(MHE vs Bayes/Particle filter)

4 Establish Observability ⇒ Consistency

5 Characterize robustness



State Estimation as an Inverse problem

1 State Estimation is fundamentally an inverse problem
Output measurements → Underlying state

2 Well-posedness of the inverse problem
Observability ⇒ (locally) unique solutions

Linear vs. Nonlinear estimation:

Linear Nonlinear
Observable Unique solution Isolated solutions

Unobservable
Linear subspace Submanifold

of solutions of solutions



Observability

Noiseless system

xk+1 = f (xk)

yk = h(xk)

Construct output maps

ΣT (x) = (h(x), h ◦ f (x), . . . , h ◦ f T (x))

Σ(x) = (h(x), h ◦ f (x), . . .)

Observability notions

1 Strong (local) observability: There is a finite T s.t.
ΣT
−1(y0:T ) is a set of isolated points

2 Weak (local) observability: Σ−1(y0:∞) is a set of isolated
points

Result: Observability characterized by a rank condition2 on ΣT ,Σ

2H. Nijmeijer, ”Observability of autonomous discrete time non-linear
systems: a geometric approach”, IJC 1982



Consistency of MHE

Consistency notion:
Asymptotic stability of estimator in the absence of noise
limk→∞ |xk − x̂k | = 0 when w = 0, v = 0

Does observability ⇒ consistency of MHE?
Open questions from literature:

Results in literature3 establish consistency from
Input-Output-to-State Stability (IOSS)

IOSS not connected to well-posedness (observability)

Results on consistency of Fast-MHE assume convexity of cost
(very restrictive for nonlinear systems)

Robustness guarantees for Fast-MHE

3Rao, Rawlings, Mayne, ”Constrained state estimation for nonlinear
discrete-time systems”, TAC 2000



Consistency from Observability

Basin of attraction: Ck is the basin of attraction of ΣT
−1(yk:k+T )

for gradient descent on Gk

Assumption (Positive invariance)

There exists α > (1−
√

1− 2lL)l−1 s.t. for all η ∈ (0, α), we
have proxηGN

k
◦ f (Ck−1) ⊆ Ck .

Theorem (Asymptotic stability of W2-MHE)

For a strongly observable system, the MHE with

η ∈
(

1−
√

1−2lL
l ,min

{
α, 1

l

})
is consistent.



Robustness

Robustness of MHE to:

1 Uncertainty in initial conditions – W2(µ0, δx0)

2 Noise – w, v

Theorem (Robustness of W2-MHE)

The W2-MHE satisfies:

W2(µk , δxk ) ≤ β(W2(µ0, δx0), k) + γ(w0:k , v0:k)

for β ∈ KL, γ ∈ K.



Future Work

1 Compare different estimators within the unified framework
(performance w.r.t. estimation error, rate of convergence, etc)

2 Connection between well-posedness and stability notions
(observability/detectability vs IOSS)

3 Effect of horizon length on estimator performance

4 Coupling b/w point estimates to improve MHE performance
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