Moving Horizon Estimation (MHE) in a Distributional Framework

Vishaal Krishnan Sonia Martínez

University of California, San Diego

American Control Conference 2019

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

The Setting

System

$$
x_{k+1} = f(x_k, w_k)
$$

$$
y_k = h(x_k) + v_k
$$

Lipschitz: f, h are Lipschitz-continuous • Noise characteristics:

 w_k , v_k (bounded, i.i.d.)

Optimization-based estimation: Given data $\mathbf{y}_{0:T} = (y_0, \ldots, y_T)$, get estimates \widehat{x}_k of x_k by an optimization procedure

Full Information Estimation (FIE):

- \bullet Use all the data within the window 0 : T
- **•** Static optimization problem to obtain estimate:

$$
\widehat{x}_0 = \arg\min_{z_0, \textbf{w}, \textbf{v}} J(\textbf{y}_{0:T}, \widehat{\textbf{y}}_{0:T})
$$

Moving Horizon Estimation (MHE):

- Use a moving window of length $N \ll l$
- At time instant $k + N$, use data from $k + 1 : k + N$
- Recursive (online) optimization to obtain estimates:

 $\widehat{x}_{k+1} \in \arg \min_{z_{k+1}, \mathbf{w}, \mathbf{v}} \gamma(f(\widehat{x}_k, w_k), z_{k+1}) + J(\mathbf{y}_{k+1:k+N}, \widehat{\mathbf{y}}_{k+1:k+N})$

 \bullet Prediction $+$ Correction

MHE vs Probabilistic Estimation

- MHE is a point estimator
- Estimation is fundamentally about dealing with uncertainty (Initial conditions, Measurement/Process noise)
- Estimates are essentially probability distributions, tracking the distribution is important: Kalman filter – Mean $+$ Covariance define the distribution in Linear $+$ Gaussian setting Bayesian estimation – Updating the prior distribution with measurements $+$ likelihood to obtain posterior

4 D > 4 P + 4 B + 4 B + B + 9 Q O

• How about in the moving-horizon setting? Characterizing the evolution in nonlinear, non-Gaussian setting is difficult

- **4** Point estimation vs Probabilistic estimation: A unifying framework for MHE and Bayesian estimation
- ² Consistency/Asymptotic stability of MHE: Connection to classical observability notions Existing results built on Input-Output-to-State Stability

KORK ERKER ADE YOUR

3 Computational bottleneck in MHE: A theory of Fast-MHE (consistency, robustness)

- **1** Setup the Fast-MHE formulation (as a point estimator)
- 2 Lift the point estimator to the space of distributions (obtain the probabilistic version)

KORK ERKER ADE YOUR

- ³ Realize the unification principle (MHE vs Bayes/Particle filter)
- ⁴ Establish Observability ⇒ Consistency
- **6** Characterize robustness

The recursive formulation:

$$
\widehat{x}_{k+1} \in \arg\min_{z_{k+1}, \mathbf{w}, \mathbf{v}} \gamma(f(\widehat{x}_k, w_k), z_{k+1}) + J(\mathbf{y}_{k+1:k+N}, \widehat{\mathbf{y}}_{k+1:k+N})
$$

- Is computationally intensive
- Decision variables in optimization z_{k+1} , w, v Scales with size of horizon – Need for fast MHE
- Fast MHE: Drop w, v from the optimization¹ Propagate by noiseless system: $x_{k+1} = f(x_k)$; $y_k = h(x_k)$

 $¹$ Alessandri, Gaggero, TAC 2017</sup>

KORKAR KERKER EL VOLO

Online proximal gradient descent:

$$
\widehat{x}_{k+1} \in \arg\min_{z} \frac{1}{2}|z - f(\widehat{x}_k)|^2 + \eta G_k(z)
$$

$$
G_k(z) = J(\mathbf{y}_{k+1:k+N}, h \circ f^{1:N}(z))
$$

(assume G_k has *l*-Lipschitz gradient)

Objective function strongly convex for $\eta < \frac{1}{l}$:

$$
\widehat{x}_{k+1} = \text{prox}_{\eta G_k} \circ f(\widehat{x}_k)
$$

= $f(\widehat{x}_k) - \eta \nabla G_k(\widehat{x}_{k+1})$

Alternative: Regular gradient descent

$$
\widehat{x}_{k+1} = f(\widehat{x}_k) - \eta \nabla G_k(\widehat{x}_k)
$$

Diff
$$
\hat{x}_{k+1} = \arg \min_{z} \frac{1}{2} |z - f(\hat{x}_k)|^2 + \eta G(z)
$$
 to $\mathcal{P}(\mathbb{X})$:

\n(in the space of distributions over state space \mathbb{X})

\n $\mu_{k+1} = \arg \min_{\nu} \frac{1}{2} W_2^2(f_{\#} \mu_k, \nu) + \eta \mathbb{E}_{\nu} [G]$

\n W_2 is the L^2 -Wasserstein distance

イロト イ母 トイミト イミト ニヨー りんぴ

$$
W_2^2(\mu,\nu)=\inf_{\pi\in\Pi(\mu,\nu)}\int_{\mathbb{X}\times\mathbb{X}}|x-y|^2d\pi(x,y)
$$

- Optimal transport cost from μ to ν (w.r.t. Euclidean distance)
- \bullet Defines a metric on $\mathcal{P}(\mathbb{X})$

イロン イ部ン イ君ン イ君ン

 \Rightarrow

 2990

Distributional MHE:

$$
\mu_{k+1} = \arg\min_{\nu} \ \frac{1}{2} W_2^2(f_{\#}\mu_k, \nu) + \eta \mathbb{E}_{\nu} [G]
$$

Replace Wasserstein $\frac{1}{2}W_2^2$ by a general D:

$$
\mu_{k+1} = \arg\min_{\nu} \ D(f_{\#}\mu_k, \nu) + \eta \mathbb{E}_{\nu} [G]
$$

Observation:

If $D = D_{KL}$ (KL-divergence) – Bayesian estimation (Implement by Sequential Monte Carlo/Particle filter)

- **1** Setup the Fast-MHE formulation (as a point estimator) \checkmark
- **2** Lift the point estimator to the space of distributions (obtain the probabilistic version) \checkmark

KORK ERKER ADE YOUR

- Realize the unification principle (MHE vs Bayes/Particle filter)
- ⁴ Establish Observability ⇒ Consistency
- **6** Characterize robustness

State Estimation as an Inverse problem

- **1** State Estimation is fundamentally an inverse problem Output measurements \rightarrow Underlying state
- ² Well-posedness of the inverse problem Observability \Rightarrow (locally) unique solutions

Linear vs. Nonlinear estimation:

Noiseless system

Construct output maps

$$
x_{k+1} = f(x_k)
$$

\n
$$
y_k = h(x_k)
$$

\n
$$
\sum \tau(x) = (h(x), h \circ f(x), \dots, h \circ f^T(x))
$$

\n
$$
\sum (x) = (h(x), h \circ f(x), \dots)
$$

Observability notions

- **Strong (local) observability:** There is a finite T s.t. $\overline{\Sigma}_{\mathcal{T}}{}^{-1}(\mathbf{y}_{0:\mathcal{T}})$ is a set of isolated points
- $\textbf{2}$ Weak (local) observability: $\mathsf{\Sigma}^{-1}(\mathsf{y}_{0:\infty})$ is a set of isolated points

Result: Observability characterized by a rank condition² on Σ_{τ} , Σ

²H. Nijmeijer, "Observability of autonomous discrete time non-linear systems: a geometric approach", IJC 1982**KORKA SERKER ORA**

Consistency notion:

Asymptotic stability of estimator in the absence of noise $\lim_{k\to\infty}$ $|x_k - \hat{x}_k| = 0$ when $\mathbf{w} = 0$, $\mathbf{v} = 0$

Does observability \Rightarrow consistency of MHE? Open questions from literature:

- Results in literature³ establish consistency from Input-Output-to-State Stability (IOSS)
- IOSS not connected to well-posedness (observability)
- Results on consistency of Fast-MHE assume convexity of cost (very restrictive for nonlinear systems)
- Robustness guarantees for Fast-MHE

³Rao, Rawlings, Mayne, "Constrained state estimation for nonlinear discrete-time systems", TAC 2000**K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^**

Basin of attraction: \mathcal{C}_k is the basin of attraction of $\Sigma_{\mathcal{T}}{}^{-1}(\mathbf{y}_{k:k+\mathcal{T}})$ for gradient descent on G_k

Assumption (Positive invariance)

There exists α > $(1 -$ √ $\overline{1-2l\mathsf{L}})$ l $^{-1}$ s.t. for all $\eta\in(0,\alpha)$, we have pro $x_{\eta G_k^N} \circ f(\mathcal{C}_{k-1}) \subseteq \mathcal{C}_k$.

KORKAR KERKER EL VOLO

Theorem (Asymptotic stability of W_2 -MHE)

For a strongly observable system, the MHE with $\eta \in \left(\frac{1-\sqrt{1-2lL}}{l}\right)$ $\overline{\frac{1-2IL}{I}},$ min $\left\{ \alpha,\frac{1}{I}\right\} \Big)$ is consistent.

Robustness of MHE to:

- \bullet Uncertainty in initial conditions $W_2(\mu_0, \delta_{\mathsf{x}_0})$
- **2** Noise w, v

Theorem (Robustness of W_2 -MHE)

The W_2 -MHE satisfies:

$$
W_2(\mu_k, \delta_{x_k}) \leq \beta(W_2(\mu_0, \delta_{x_0}), k) + \gamma(\mathbf{w}_{0:k}, \mathbf{v}_{0:k})
$$

KORK ERKER ADE YOUR

for $\beta \in \mathcal{KL}$, $\gamma \in \mathcal{K}$.

- **1** Compare different estimators within the unified framework (performance w.r.t. estimation error, rate of convergence, etc)
- ² Connection between well-posedness and stability notions (observability/detectability vs IOSS)
- **3** Effect of horizon length on estimator performance
- **4** Coupling b/w point estimates to improve MHE performance

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Thank You

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ 9 Q @