Moving Horizon Estimation (MHE) in a Distributional Framework

Vishaal Krishnan Sonia Martínez

University of California, San Diego

American Control Conference 2019

The Setting

System

$$x_{k+1} = f(x_k, w_k)$$
$$y_k = h(x_k) + v_k$$

- Lipschitz: f, h are Lipschitz-continuous
 Noise characteristics:
 - w_k , v_k (bounded, i.i.d.)

Optimization-based estimation: Given data $\mathbf{y}_{0:T} = (y_0, \dots, y_T)$, get estimates \hat{x}_k of x_k by an optimization procedure

Full Information Estimation (FIE):

- \bullet Use all the data within the window 0 : ${\cal T}$
- Static optimization problem to obtain estimate:

$$\widehat{x}_0 = \arg\min_{z_0, \mathbf{w}, \mathbf{v}} J(\mathbf{y}_{0:T}, \widehat{\mathbf{y}}_{0:T})$$

Moving Horizon Estimation (MHE):

- Use a moving window of length $N \ll T$
- At time instant k + N, use data from k + 1 : k + N
- Recursive (online) optimization to obtain estimates:

 $\widehat{x}_{k+1} \in \arg\min_{z_{k+1}, \mathbf{w}, \mathbf{v}} \gamma(f(\widehat{x}_k, w_k), z_{k+1}) + J(\mathbf{y}_{k+1:k+N}, \widehat{\mathbf{y}}_{k+1:k+N})$

• Prediction + Correction

MHE vs Probabilistic Estimation

- MHE is a point estimator
- Estimation is fundamentally about dealing with uncertainty (Initial conditions, Measurement/Process noise)
- Estimates are essentially probability distributions, tracking the distribution is important: Kalman filter – Mean + Covariance define the distribution in Linear + Gaussian setting Bayesian estimation – Updating the prior distribution with measurements + likelihood to obtain posterior

• How about in the moving-horizon setting? Characterizing the evolution in nonlinear, non-Gaussian setting is difficult

- Point estimation vs Probabilistic estimation: A unifying framework for MHE and Bayesian estimation
- Consistency/Asymptotic stability of MHE: Connection to classical observability notions Existing results built on Input-Output-to-State Stability

Computational bottleneck in MHE: A theory of Fast-MHE (consistency, robustness)

- Setup the Fast-MHE formulation (as a point estimator)
- Lift the point estimator to the space of distributions (obtain the probabilistic version)

- Realize the unification principle (MHE vs Bayes/Particle filter)
- Establish Observability ⇒ Consistency
- Oharacterize robustness

The recursive formulation:

$$\widehat{x}_{k+1} \in \arg\min_{z_{k+1}, \mathbf{w}, \mathbf{v}} \gamma(f(\widehat{x}_k, w_k), z_{k+1}) + J(\mathbf{y}_{k+1:k+N}, \widehat{\mathbf{y}}_{k+1:k+N})$$

- Is computationally intensive
- Decision variables in optimization z_{k+1}, w, v
 Scales with size of horizon Need for fast MHE
- Fast MHE: Drop w, v from the optimization¹ Propagate by noiseless system: $x_{k+1} = f(x_k)$; $y_k = h(x_k)$

¹Alessandri, Gaggero, *TAC 2017*

Online proximal gradient descent:

$$\widehat{x}_{k+1} \in \arg\min_{z} \frac{1}{2}|z-f(\widehat{x}_{k})|^{2} + \eta G_{k}(z)$$

$$egin{aligned} G_k(z) &= J(\mathbf{y}_{k+1:k+N}, \ h \circ f^{1:N}(z)) \ (\text{assume } G_k \ \text{has I-Lipschitz gradient}) \end{aligned}$$

Objective function strongly convex for $\eta < \frac{1}{I}$:

$$egin{aligned} \widehat{x}_{k+1} &= \mathsf{prox}_{\eta G_k} \circ f(\widehat{x}_k) \ &= f(\widehat{x}_k) - \eta
abla G_k(\widehat{x}_{k+1}) \end{aligned}$$

Alternative: Regular gradient descent

$$\widehat{x}_{k+1} = f(\widehat{x}_k) - \eta \nabla G_k(\widehat{x}_k)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lift
$$\hat{x}_{k+1} = \arg \min_{z} \frac{1}{2} |z - f(\hat{x}_{k})|^{2} + \eta G(z)$$
 to $\mathcal{P}(\mathbb{X})$:
(in the space of distributions over state space \mathbb{X})
$$\mu_{k+1} = \arg \min_{\nu} \frac{1}{2} W_{2}^{2}(f_{\#}\mu_{k},\nu) + \eta \mathbb{E}_{\nu} [G]$$
$$W_{2} \text{ is the } L^{2}\text{-Wasserstein distance}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

$$W_2^2(\mu,
u) = \inf_{\pi\in\Pi(\mu,
u)}\int_{\mathbb{X} imes\mathbb{X}}|x-y|^2d\pi(x,y)$$

- Optimal transport cost from μ to ν (w.r.t. Euclidean distance)
- Defines a metric on $\mathcal{P}(\mathbb{X})$

Distributional MHE:

$$\mu_{k+1} = \arg \min_{\nu} \ \frac{1}{2} W_2^2(f_{\#}\mu_k, \nu) + \eta \mathbb{E}_{\nu} [G]$$

Replace Wasserstein $\frac{1}{2}W_2^2$ by a general *D*:

$$\mu_{k+1} = \arg\min_{\nu} D(f_{\#}\mu_k, \nu) + \eta \mathbb{E}_{\nu}[G]$$

Observation:

If $D = D_{KL}$ (KL-divergence) – Bayesian estimation (Implement by Sequential Monte Carlo/Particle filter)

- Setup the Fast-MHE formulation (as a point estimator) ✓
- Lift the point estimator to the space of distributions (obtain the probabilistic version)

- Realize the unification principle (MHE vs Bayes/Particle filter)
- Establish Observability => Consistency
- 6 Characterize robustness

State Estimation as an Inverse problem

- State Estimation is fundamentally an inverse problem Output measurements → Underlying state
- Well-posedness of the inverse problem
 Observability ⇒ (locally) unique solutions

Linear vs. Nonlinear estimation:

	Linear	Nonlinear
Observable	Unique solution	Isolated solutions
Unobservable	Linear subspace	Submanifold
	of solutions	of solutions

Noiseless system

Construct output maps

$$\begin{aligned} x_{k+1} &= f(x_k) & \Sigma_T(x) &= (h(x), h \circ f(x), \dots, h \circ f^T(x)) \\ y_k &= h(x_k) & \Sigma(x) &= (h(x), h \circ f(x), \dots) \end{aligned}$$

Observability notions

- Strong (local) observability: There is a finite T s.t. $\Sigma_T^{-1}(\mathbf{y}_{0:T})$ is a set of isolated points
- Weak (local) observability: Σ⁻¹(y_{0:∞}) is a set of isolated points

Result: Observability characterized by a rank condition² on Σ_T, Σ

²H. Nijmeijer, "Observability of autonomous discrete time non-linear systems: a geometric approach", *IJC 1982*

Consistency notion:

Asymptotic stability of estimator in the absence of noise $\lim_{k\to\infty} |x_k - \hat{x}_k| = 0$ when $\mathbf{w} = 0$, $\mathbf{v} = 0$

Does observability \Rightarrow consistency of MHE? Open questions from literature:

- Results in literature³ establish consistency from Input-Output-to-State Stability (IOSS)
- IOSS not connected to well-posedness (observability)
- Results on consistency of Fast-MHE assume convexity of cost (very restrictive for nonlinear systems)
- Robustness guarantees for Fast-MHE

³Rao, Rawlings, Mayne, "Constrained state estimation for nonlinear discrete-time systems", *TAC 2000*

Basin of attraction: C_k is the basin of attraction of $\Sigma_T^{-1}(\mathbf{y}_{k:k+T})$ for gradient descent on G_k

Assumption (Positive invariance)

There exists
$$\alpha > (1 - \sqrt{1 - 2lL})^{l-1}$$
 s.t. for all $\eta \in (0, \alpha)$, we have $\operatorname{prox}_{\eta G_k^N} \circ f(\mathcal{C}_{k-1}) \subseteq \mathcal{C}_k$.

Theorem (Asymptotic stability of <u>W2-MHE</u>)

For a strongly observable system, the MHE with $\eta \in \left(\frac{1-\sqrt{1-2lL}}{l}, \min\left\{\alpha, \frac{1}{l}\right\}\right)$ is consistent.

Robustness of MHE to:

- Uncertainty in initial conditions $W_2(\mu_0, \delta_{x_0})$
- 2 Noise w, v

Theorem (Robustness of *W*₂-MHE)

The W₂-MHE satisfies:

$$W_2(\mu_k,\delta_{\mathsf{x}_k})\leqeta(W_2(\mu_0,\delta_{\mathsf{x}_0}),k)+\gamma(\mathsf{w}_{0:k},\mathsf{v}_{0:k})$$

for $\beta \in \mathcal{KL}$, $\gamma \in \mathcal{K}$.

- Compare different estimators within the unified framework (performance w.r.t. estimation error, rate of convergence, etc)
- Connection between well-posedness and stability notions (observability/detectability vs IOSS)
- **③** Effect of horizon length on estimator performance
- Soupling b/w point estimates to improve MHE performance

Thank You