Moving Horizon Estimation (MHE)
in a Distributional Framework

Vishaal Krishnan  Sonia Martinez

University of California, San Diego

American Control Conference 2019



The Setting

System

X1 = F (XK, wi) x'= £(x, W)
Vi = h(xk) + vk
y=h(x)
\' SH

@ Lipschitz: +

f, h are Lipschitz-continuous
@ Noise characteristics: Estimator

wi, vi (bounded, i.i.d.) |

Optimization-based estimation:
Given data yo.7 = (yo, ..., yT), get estimates Xk of xx by an
optimization procedure




Optimization-based Estimation

Full Information Estimation (FIE):

Use all the data within the window 0 : T

Static optimization problem to obtain estimate:

Xo = arg zgnvivnv J(yo:7,¥Yo:T)

Moving Horizon Estimation (MHE):

Use a moving window of length N << T
At time instant kK + N, use data from k+1: k+ N

Recursive (online) optimization to obtain estimates:

Xk41 € arg kaiu vv(f(?k, Wk)s Zk+1) + J(Yk+1:k+Ns Yot+1:k+N)

@ Prediction + Correction



MHE vs Probabilistic Estimation

MHE is a point estimator

Estimation is fundamentally about dealing with uncertainty
(Initial conditions, Measurement/Process noise)

Estimates are essentially probability distributions, tracking the
distribution is important:

Kalman filter — Mean + Covariance define the distribution in
Linear 4+ Gaussian setting

Bayesian estimation — Updating the prior distribution with
measurements + likelihood to obtain posterior

How about in the moving-horizon setting?
Characterizing the evolution in nonlinear, non-Gaussian
setting is difficult



Objectives of this work

@ Point estimation vs Probabilistic estimation:
A unifying framework for MHE and Bayesian estimation

@ Consistency/Asymptotic stability of MHE:
Connection to classical observability notions
Existing results built on Input-Output-to-State Stability

© Computational bottleneck in MHE:
A theory of Fast-MHE (consistency, robustness)



@ Setup the Fast-MHE formulation
(as a point estimator)

@ Lift the point estimator to the space of distributions
(obtain the probabilistic version)

© Realize the unification principle
(MHE vs Bayes/Particle filter)

@ Establish Observability = Consistency

@ Characterize robustness



Computational Bottleneck

The recursive formulation:

Xk+1 € arg kaiu V’Y(f()?ka Wk)s Zk+1) + J(Ykt1:k+N> Yh+1:k+N)

@ Is computationally intensive

@ Decision variables in optimization — zx 11, w, Vv
Scales with size of horizon — Need for fast MHE

e Fast MHE: Drop w,v from the optimization!
Propagate by noiseless system: xx11 = f(xk); Yk = h(xk)

! Alessandri, Gaggero, TAC 2017



Proximal GD formulation of Fast-MHE

Online proximal gradient descent:
~ .1 (2
X1 € argmin o[z — £(Xc)|” +1Gk(2)

Gi(2) = J(Yrr1ktn, hofHN(2))
(assume G has I-Lipschitz gradient)

. J

. . . 1 .
Objective function strongly convex for n < 7:

?k+1 = prOX’V]Gk o f()/(\k)
= f(Xk) = 1V Gr(Xie11)

Alternative: Regular gradient descent

5<\k+1 = f(;?k) — HVGk()A(k)



Fast-MHE in a distributional framework

Lift Xky1 = argmin, 3|z — f(%)|? + 7G(2) to P(X):
(in the space of distributions over state space X)

1
prr = argmin S W3 (fg g, v) + 1By [G]

W, is the L2-Wasserstein distance




[2-Wasserstein distance

W2(uv) = inf / x— yPdr(xy) -
7€N(p,v) Jxxx .

@ Optimal transport cost from u to v o y
(w.r.t. Euclidean distance) -

@ Defines a metric on P(X)




Unification of MHE and Bayes

Distributional MHE:

1
1 = argmin = W2 (£, v) + 0y [G]

Replace Wasserstein %W22 by a general D:

pkyr = argmin D(fypu, v) + 1€, [G]

Observation:
If D = Dk (KL-divergence) — Bayesian estimation
(Implement by Sequential Monte Carlo/Particle filter)




@ Setup the Fast-MHE formulation
(as a point estimator) v/

@ Lift the point estimator to the space of distributions
(obtain the probabilistic version) v

© Realize the unification principle
(MHE vs Bayes/Particle filter) v

@ Establish Observability = Consistency

@ Characterize robustness



State Estimation as an Inverse problem

@ State Estimation is fundamentally an inverse problem
Output measurements — Underlying state

@ Well-posedness of the inverse problem
Observability = (locally) unique solutions

Linear vs. Nonlinear estimation:

Linear Nonlinear
Observable | Unique solution | Isolated solutions
Linear subspace Submanifold
Unobservable . P .
of solutions of solutions




Observability

Noiseless system Construct output maps
Xk+1 = F(xk) Y7(x) = (h(x),ho f(x),...,ho fT(x))
vk = h(xx) Y (x) = (h(x),hof(x),...)

Observability notions

@ Strong (local) observability: There is a finite T s.t.
Y7 Y(yo.7) is a set of isolated points

@ Weak (local) observability: ¥~1(yo.00) is a set of isolated
points

Result: Observability characterized by a rank condition? on ¥ 7, %

2H. Nijmeijer, " Observability of autonomous discrete time non-linear
systems: a geometric approach”, IJC 1982



Consistency of MHE

Consistency notion:
Asymptotic stability of estimator in the absence of noise
limg o0 |Xk — Xk| = 0 when w =0, v=20

Does observability = consistency of MHE?
Open questions from literature:

@ Results in literature3 establish consistency from
Input-Output-to-State Stability (I0SS)

@ 10SS not connected to well-posedness (observability)

@ Results on consistency of Fast-MHE assume convexity of cost
(very restrictive for nonlinear systems)

@ Robustness guarantees for Fast-MHE

®Rao, Rawlings, Mayne, " Constrained state estimation for nonlinear
discrete-time systems”, TAC 2000



Consistency from Observability

Basin of attraction: Cy is the basin of attraction of ZT_I(yk:k+7-)
for gradient descent on Gy

Assumption (Positive invariance)

There exists a > (1 — /1 =2IL)I7! s.t. for all n € (0, ), we
have prox, g © f(Ck—1) C Ck.

A\

Theorem (Asymptotic stability of W,-MHE)

For a strongly observable system, the MHE with

ne (177 A=2R min {a, 1 ) is consistent.

\




Robustness of MHE to:
@ Uncertainty in initial conditions — Wa(10, 0x,)
@ Noise —w, v

Theorem (Robustness of W)-MHE)

The W5-MHE satisfies:

Wa(pek, 0x,) < B(Wa(po,0x)s k) + 7(Wo:k; Vo:k)

for 6 € KL, v € K.




Future Work

© Compare different estimators within the unified framework
(performance w.r.t. estimation error, rate of convergence, etc)

@ Connection between well-posedness and stability notions
(observability /detectability vs 10SS)

© Effect of horizon length on estimator performance

© Coupling b/w point estimates to improve MHE performance
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