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Abstract— In this work, we propose a unifying framework
in the space of probability measures for gradient-based and
sampling-based moving-horizon estimation methods. We be-
gin with an investigation of the classical notion of strong
local observability of nonlinear systems and its relationship
to optimization-based state estimation. We then present a
general moving-horizon estimation framework for strongly
locally observable systems, as an iterative minimization scheme
in the space of probability measures. This framework allows
for the minimization of the estimation cost with respect to
different metrics and divergences. In particular, we consider
two variants, which we name W2-MHE and KL-MHE, where
the minimization scheme uses the 2-Wasserstein distance and
the KL-divergence respectively. The W2-MHE yields a gradient-
based estimator whereas the KL-MHE yields a particle filter,
for which we investigate asymptotic stability and robustness
properties. Stability results for these moving-horizon estimators
are derived in the distributional setting, against the backdrop
of the classical notion of strong local observability which, to
the best of our knowledge, differentiates it from other previous
works. We also present results from numerical simulations to
demonstrate the performance of these estimators.

I. INTRODUCTION

Moving-horizon estimation (MHE) is an optimization-
based state estimation method that uses the most recent
measurements within a moving time horizon to recursively
update state estimates. In principle, its optimization-based
formulation enables it to handle nonlinearities and state
constraints much more effectively than other known methods.
This, coupled with the availability of increasingly powerful,
inexpensive computing platforms, has brought new impetus
to the adoption of moving-horizon methods in novel estima-
tion applications.

The origins of MHE can be traced back to limited-memory
optimal filters, see [1] for an early work. Further theoretical
investigations have broadly been directed at establishing their
asymptotic stability [2]–[4] and robustness [5]–[7] properties.
These results have primarily been built upon underlying as-
sumptions of input/output-to-state (IOSS) stability [8], which
is adopted as the notion of detectability. However, alternative
foundations for stability results relying on other classical
notions of observability, such as strong observability [9],
have remained unexplored. The connection between nonlin-
ear observability theory and estimation problems runs deep,
see [10] and, more recently [11], and it is worthwhile to study
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this unexamined connection in the context of optimization-
based estimation methods.

On the other hand, the problem of state estimation is
fundamentally about dealing with uncertainty, manifested as
uncertainty in the initial conditions and/or in the evolution
of the system in the presence of unknown disturbances. This
can be appropriately formulated in the space of probability
measures over the state space of the system. Recent advances
in gradient flows in the space of probability measures [12],
and the corresponding discrete-time movement-minimizing
schemes [13] present powerful theoretical tools that can be
leveraged for recursive optimization-based estimation meth-
ods such as MHE, and can serve as a unifying framework
for their design and analysis.

Another important consideration for the applicability of
MHE is the cost of computation, which increases with the
length of the horizon. The most widely adopted formulation
of MHE requires solving an optimization problem at every
time instant, with both state estimate and disturbances taken
as decision variables. This approach, in general, tends to
be computationally intensive, which poses a hurdle for
implementation in real-time. This has motivated the search
for fast MHE that just implement one or more iterations of
an optimization algorithm at every time instant. Recently,
in [14], [15], the authors develop such method for noiseless
systems and provided theoretical guarantees for convergence.
However, these works assume the cost function is convex,
which is restrictive for general nonlinear systems, and not
well connected to notions of observability.

Statement of contributions: In this work, we begin with the
well-studied notion of strong local observability of nonlinear,
discrete-time systems and investigate its relationship to the
optimization-based state estimation problem. To handle un-
certain initial conditions and the possible nonuniqueness of
solutions to the estimation problem, we generalize the basic
setting as an optimization problem in the space of probability
measures over the state space. In particular, we formulate the
MHE as a proximal-gradient optimization in this space, with
a nonconvex, time-varying cost function. This distributional
formulation serves as a unifying framework for moving-
horizon estimation and allows us to develop different classes
of estimators by varying the metric used in the proximal
operator. In this way, we consider the Wasserstein metric and
the KL-divergence, which yield the more familiar MHE and
a particle filter, respectively, after a Monte-Carlo sampling
procedure. Following this, we present an analysis of the
convergence and robustness properties of these filters in
the distributional setting, under assumptions of strong local



observability.

II. NOTATION AND PRELIMINARIES

In this section, we introduce the notation and mathematical
preliminaries relevant to this paper.

We denote by∇ =
(

∂
∂x1

, . . . ∂
∂xn

)
the gradient operator in

Rd. For any x ∈ X ⊂ Rd, we let µ ∈ P(X ) be an absolutely
continuous probability measure on X ⊂ Rd. We denote by ρ
the corresponding density function, where dµ = ρ dvol,
with vol being the Lebesgue measure. Let M be a subset of a
metric space (X , d). The distance d(x,M) of a point x ∈ X
to the set M is given by d(x,M) = infy∈M d(x, y). We
denote by 〈p, q〉 the inner product of functions p, q : X → R
with respect to the Lebesgue measure vol, given by 〈p, q〉 =∫
X pq dvol. Let F : P(X ) → R be a smooth real-valued

function on the space of probability measures on X ⊂ Rd.
We denote by δF

δµ (x) the derivative of F with respect to µ,
see [16], such that a perturbation δµ of the measure results in
a perturbation δF =

∫
X
δF
δµ d(δµ). Given a map T : X → Y

and a measure µ ∈ P(X ), in the space of probability
measures P(X ), we let ν = T#µ denote the pushforward
measure of µ by T , where for a measurable set B ⊂ T (X ),
we have ν(B) = T#µ(B) = µ(T −1(B)).

We now introduce the notion of l-smoothness that under-
lies the results on convergence of gradient descent methods.

Definition 1: (l-Smoothness). A function p : X → R is
called l-smooth if for any x, y ∈ X , we have |∇p(y) −
∇p(x)| ≤ l‖y − x‖.

The following lemma can be easily verified for l-smooth
functions:

Lemma 1: (l-Smooth functions). For an l-smooth func-
tion p : X → R and any x, y ∈ X , we have |p(y)− p(x)−
〈∇p(x), y − x〉| ≤ l

2‖y − x‖
2. •

We now define the proximal operator on a metric (or
pseudo metric) space (Y, d) endowed with a metric (or
pseudo metric) d, with respect to a function F : Y → R,
as follows:

proxdF (y) = arg min
ỹ∈Y

1

2
d2(ỹ, y) + F (ỹ).

We now introduce the notion of lower semicontinuity of
set-valued maps, which underlies some of the results on
optimization-based state estimation in this paper.

Definition 2: (Lower semicontinuity of set-valued maps).
A point-to-set mapping L : Z ⊂ R ⇒ Rd is lower
semicontinuous at a point α ∈ Z if for any x ∈ L(α) and
sequences {αi} ⊆ Z , {xi} ⊆ Rd with {αi} → α, {xi} → x
such that xi ∈ L(αi) for all i, it holds that x ∈ L(α). If L
is lower semicontinuous at every α ∈ Z , then L is said to
be lower semicontinuous on Z .

III. OBSERVABILITY NOTIONS

In this paper, we consider systems of the form:

Ω :

{
xk+1 = f(xk, wk),

yk = h(xk) + vk,
(1)

where f : X × W → X and h : X → Y, wk ∈ W is
the process noise, vk ∈ V is the measurement noise at time
instant k, and sets of appropriate dimension X ⊂ RdX , Y ⊂
RdY , W ⊂ RdW and V ⊂ RdV .

Assumption 1: (Lipschitz continuity). The functions f
and h are Lipschitz continuous, such that ‖f(x1, w1) −
f(x2, w2)‖ ≤ c(1)f ‖x1− x2‖+ c

(2)
f ‖w1−w2‖ and ‖h(x1)−

h(x2)‖ ≤ ch‖x1 − x2‖.
Assumption 2: (Noise characteristics). The noise se-

quences {wk}k∈N and {vk}k∈N are i.i.d samples from dis-
tributions ω and ν (with supports in W and V). The sets W
and V are bounded, with |wk| ≤W and |vk| ≤ V . Moreover,
we assume that E[wk] = 0 and E[vk] = 0.

We also introduce the following autonomous system cor-
responding to (1):

Σ :

{
xk+1 = f(xk, 0) = f0(xk),

yk = h(xk).
(2)

With a slight abuse of notation, for any x ∈ X, we
let ΣT (x) =

(
h(x), h ◦ f0(x), . . . , h ◦ fT0 (x)

)
be the se-

quence of outputs over a horizon of length T + 1 for
the system (2) from the state x ∈ X. Similarly, for the
system (1), we let Ωwi:j

(x) = (h(x), h ◦ f(x,wi), . . . , h ◦
f(. . . f(f(x,wi), wi+1), . . . , wj), for some sequence of pro-
cess noise samples {wk}, where wi:j = (wi, . . . , wj).

We now introduce the notion of strong local observability
used in this paper:

Definition 3: (Strong local observability). The system Σ
defined in (2) is called strongly locally observable if there
exists a T0 ∈ N such that for any given yT = ΣT (x) ∈
YT+1 and T ≥ T0, we have that ΣT

−1(yT ) is a set of
isolated points, and, in addition, ΣT1

−1(y1) = ΣT2

−1(y2),
for all y1 = ΣT1

(x) and y2 = ΣT2
(x), and T1, T2 ≥ T0. We

call T0 the minimum horizon length of Σ.
The above definition is equivalent to the definitions contained
in [9] and [18]. We have restated it in a manner that is
suitable for the optimization-based estimation framework that
is considered in this paper. For systems with process noise,
of the form Ω in (1), we introduce the notion of almost sure
strong local observability.

Definition 4: (Almost sure strong local observability).
The system Ω defined in (1) is called almost surely strongly
locally observable if there exists a Tw ∈ N such that, given
a process noise sequence w0:T−1 ∈ WT , for T ≥ Tw,
and any y = Ωw0:T−1

(x) ∈ YT+1 and T ≥ Tw, we
have that Ω−1w0:T−1

(y) is a set of isolated points almost
surely. More precisely, the set of noise sequences w0:T−1
for which Ω−1w0:T−1

(y) is not a set of isolated points, is of
measure zero. Moreover, we call Tw the minimum horizon
length of Ω.

We now present a fundamental result that characterizes
strong local observability via a rank condition.

Lemma 2: (Observability rank condition [9]). The sys-
tem Σ is locally strongly observable with minimum horizon
length T0 if and only if Rank(∇ΣT (x)) = dim(X) for
all T ≥ T0 and x ∈ X. The system Ω is almost surely locally



strongly observable with minimum horizon length Tw if and
only if Rank(∇Ωw0:T−1

(x)) = dim(X) almost surely for
all T ≥ Tw. •

We make the following assumption in the rest of the paper:
Assumption 3: (Strong local observability).
1) The system Σ0 in (2) is strongly locally observable

with minimum horizon length T0.
2) The system Σ in (1) is almost surely strongly locally

observable with minimum horizon length Tw.

IV. OPTIMIZATION-BASED STATE ESTIMATION

We now begin by addressing the state estimation problem
for the autonomous system Σ, and develop a recursive
moving horizon estimator for it.

A. Full Information Estimation (FIE)

Let {yk}k∈{0}∪N be a sequence of measurements gener-
ated by the system Σ. Let {0, . . . , T} be a time horizon such
that T ≥ T0, the minimum horizon length of the system Σ,
and denote y0:T = (y0, . . . , yT ). The problem of estimation
essentially aims at characterizing ΣT

−1(y0:T ), which is an
inverse problem, and the problem of optimal estimation
aims to solve it through an optimization. Assumptions 1,
and 3, on Lipschitz continuity and strong local observability,
respectively, ensure that the inverse problem is locally well-
posed, as defined in [19].

To formulate the inverse problem as an optimization,
consider a convex function JT (y0:T , ·) : YT+1 → R≥0 such
that JT (y0:T , ξ) = 0 if and only if ξ = y0:T . Now, the
problem of interest becomes:

x0 ∈ arg min
x∈X

JT (y0:T ,ΣT (x)). (3)

In the above, y0:T is the data in the estimation problem,
which is given. Since the objective is to solve the original
inverse problem, and we would like to use gradient descent-
based methods, we would like that every local minimizer
of JT (y0:T ,ΣT (x)) belongs to the set ΣT

−1(y0:T ), or, in
other words, that every local minimizer is also global. We
therefore make the following additional assumption on the
system Σ and the choice of JT . For a conciseness of notation,
in the following assumption and lemma, we let JT (·) =
JT (y0:T , ·), suppressing the data y0:T in the notation where
useful, and is understood from context.

Assumption 4: (Lower semicontinuity of sublevel sets).
We assume that, for all T ≥ T0, the convex func-
tion JT : YT+1 → R is such that the set-valued map
SX(α) = ΣT

−1
(
SJTYT+1(α) ∩ ΣT (X)

)
is lower semicontin-

uous, where SJTYT+1(α) = {ξ ∈ YT+1|JT (ξ) ≤ α}.
The above assumption ensures that JT (y0:T ,ΣT (·)) satisfies
the condition for the local minimizers to be global (Theo-
rem 1 from [20]). The following lemma provides a sufficient
condition for it to hold.

Lemma 3: (Second-order sufficient condition for lower
semicontinuity). Assumption 4 holds if for any x ∈ X such
that ∇ (JT (y0:T ,ΣT (x))) = 0 we have JT (y0:T ,ΣT (x)) =

0, or the following condition holds when JT (y0:T ,ΣT (x)) 6=
0 for any v ∈ RdX , v 6= 0:

〈
∇2ΣT [v, v](x),∇JT (ΣT (x))

〉
‖∇ΣT [v]‖2

≤ −λmax

(
Hess JT

∣∣∣∣
ΣT (x)

)
•

The final inequality in Lemma 3 merely states that those
critical points at which the cost function does not reach the
global minimum value are local maximizers.

We are now ready to present the following theorem that
establishes the equivalence between the inverse problem of
characterizing the set ΣT

−1(y0:T ) and the optimization (3).
Theorem 1: (Inverse as minimizer). Under Assumptions 3

and 4, for any T ≥ T0, it holds that z ∈ ΣT
−1(y0:T ) if and

only if z is a local minimizer of JT (y0:T ,ΣT (·)).
Theorem 1 suggests that the state estimates for the system Σ
can be obtained by minimizing JT (y0:T ,ΣT (·)) over a hori-
zon of length T ≥ T0. This is also called the full information
estimation (FIE) problem in the optimal state estimation
literature [2], [7], as it works with the entire sequence of
output measurements over the horizon {0, . . . , T}.

We let Ck be the basin of attraction of ΣT
−1(yk:k+T ).

We now lift the FIE problem (3) to the space of probability
measures over X as a minimization in expectation of the
estimation objective function:

µ0 ∈ arg min
µ∈P(X)

Eµ [JT (y0:T ,ΣT (·))] . (4)

The above formulation allows us to capture information
about the (probably many) optimal estimates through a
probability measure µ0, and help encode other distributional
constraints, which will be considered in future work.

In the following, we develop recursive moving-horizon
estimators that generate sequences {µk}k∈N of probability
measures in P(X) as estimates. We then obtain practically
implementable estimators using Monte Carlo methods to
sample from the measures µk.

B. Moving Horizon Estimation (MHE)

In the previous section, we presented a full information
estimation (FIE) problem for the autonomous system Σ,
which uses the entire measurement sequence over a horizon
of length T ≥ T0. However, the minimum horizon length T0
may be large, which would make the estimation compu-
tationally intensive. We therefore adopt a moving-horizon
estimation method which, at any time instant k + N , uses
the output measurements from the horizon {k+1, . . . , k+N}
(of length N < T0), and the state estimate at the time
instant k − 1, to obtain the state estimate at instant k,
recursively.

We let GNk (z) = JN−1 (yk+1:k+N ,ΣN (z)) be the objec-
tive function over the horizon {k + 1, . . . , k + N}, at the
time instant k +N , where yk+1:k+N = (yk+1, . . . , yk+N ).

Assumption 5: (Moving horizon cost). We make the fol-
lowing assumptions on the cost function GNk :

1) the cost GNk is l-smooth,
2) it holds that |GNk+1(f0(z))−GNk (z)| ≤ L‖∇GNk (z)‖2,



3) the previous constants are such that lL ≤ 1
2 ,

4) for any two δ-adjacent measurements y, ỹ ∈ YT+1,
such that ‖y − ỹ‖ ≤ δ and with corresponding
costs GNk and G̃Nk , for k ∈ {0, . . . , T} and N ≤ T−k,
we have ‖∇(GNk (x)− G̃Nk (x))‖ ≤ lδ for all x ∈ X.

We now formulate the general moving horizon estimation
method as follows:

µk ∈ arg min
µ∈P(X)

D(µ, f0#µk−1) + ηEµ
[
GNk
]
,

given µ0 ∈ P(X),
(5)

where D is a (pseudo) metric in P(X). We obtain imple-
mentable observers from the above formulation by sampling
from the measures by Monte Carlo methods. As discussed
in the ensuing sections, using the 2-Wasserstein distance W2

yields the more familiar MHE formulation, whereas with
the KL-divergence we obtain a moving-horizon particle
filter. Hence, this formulation is proposed as a distributional
unifying framework for moving-horizon estimation, where
different estimators are generated by different choices of D.

We now introduce the following asymptotic stability no-
tion for estimators that will be used in investigating the
properties of the estimators we design.

Definition 5: (Asymptotic stability of state estimator). We
call an estimator of the form (5) an asymptotically stable ob-
server for the system Σ if the sequence of estimates {µk}k∈N
is such that limk→∞ µk(ΣT

−1(yk:k+T )) = 1 for T ≥ T0.

V. A W2-MOVING-HORIZON ESTIMATOR

In this section, we derive a moving-horizon estimator,
which we refer to as the W2-MHE, to generate a sequence
of probability distributions {µk}k∈N. This is based on the
one-step minimization scheme of [12] in P(X) w.r.t. the
Wasserstein metric W2, which we extend to the moving-
horizon setting. For every k > 0, consider:

µk ∈ arg min
µ∈P(X)

1

2
W 2

2 (µ, f0#µk−1) + ηEµ
[
GNk
]
,

given µ0 ∈ P(X).

(6)

We let Kk be the support of µk, with K0 ⊆ C0, where C0 is
as defined earlier in Section IV-A.

We represent the above in a compact form using the
proximal operator on P(X) associated with Eµ

[
GNk
]

and
w.r.t. the Wasserstein metric W2, which we denote as follows:

µk ∈ proxW2

ηGN
k

(f0#µk−1) , k > 0. (7)

The objective functional in (6) is not necessarily convex,
which implies that the image of the proximal mapping (7) is
not necessarily a singleton.

The sample-update scheme and implementable filter for
the W2-MHE formulation is given by:

zk ∈ arg min
z

1

2
|z − f0(zk−1)|2 + ηGNk (z), k > 0,

z0 ∼ µ0 ∈ P(X).
(8)

Lemma 4: (Strong convexity). For η < l−1, the ob-
jective function in (8) is strongly convex, and there-
fore proxηGN

k
(f0(x)) is a singleton for any x ∈ X.

A. Asymptotic stability of W2-MHE

We present the asymptotic stability result for W2-MHE
in this section, before which we introduce the following
assumption on positive invariance of the discrete-time dy-
namics defined by the map proxηGN

k
◦ f .

Assumption 6: (Positive invariance). We assume that
there exists α > (1 −

√
1− 2lL)l−1 such that for all η ∈

(0, α), we have proxηGN
k
◦ f(Ck−1) ⊆ Ck.

The above assumption ensures that under the discrete-time
dynamics defined by the map proxηGN

k
◦ f , any sequence

starting in the basin of attraction C0 of ΣT
−1(y0:T ) remains

within the basins of attraction Ck of ΣT
−1(yk:k+T ) at the

subsequent instants of time k ∈ N.
We are now ready to present the asymptotic stability result

for W2-MHE:
Theorem 2: (Asymptotic stability of W2-MHE). The es-

timator (6), under Assumptions 3 to 6, with a constant step

size η ∈
(

1−
√

1− 2lL

l
,min

{
α,

1

l

})
, is an asymptoti-

cally stable observer for the system Σ.

B. Robustness of W2-MHE

We now characterize the performance of the estimator (6)
on the system Ω in (1). Since the true process and measure-
ment noise sequences remain unknown, we are interested in
the robustness properties of the estimator (9), in the form of
an upper bound by the norms of the disturbance sequences
on the estimation error.

We begin by constructing a reference estimator that re-
cursively generates the estimate sequence, given the true
disturbance sequences {wk}k∈N and {vk}k∈N, as follows:

µ̄k ∈ arg min
µ∈P(X)

1

2
W 2

2 (µ, f0#µ̄k−1) + ηEµ
[
ḠNk
]
,

given µ̄0 ∈ P(X).

(9)

where, we employ for conciseness w ≡ wk:k+N−1 =
(wk, . . . , wk+N−1) and v ≡ vk+1:k+N =
(vk+1, . . . , vk+N ), so that ḠNk (z) ≡ ḠNk (z,w,v) =
JN−1

(
yk+1:k+N ,Ωwk:k+N−1

(z) + vk+1:k+N

)
. Note

that GNk = ḠNk
∣∣
w=0,v=0

. We let K̄k be the support of µ̄k,
with K̄0 ⊆ C̄0, where the definition of C̄k is similar to that
of Ck but taking the noise {wk} and {vk} into account.

Assumption 7: (l-Smoothness w.r.t. disturbances).
We assume that ‖∇GNk (z) − ∇ḠNk (z)‖ ≤
lw‖(wk:k+N−1,vk+1:k+N )‖ for all z ∈ X.

Following Theorem 2, under the same set of underlying as-
sumptions, we infer that the reference estimator (9) is almost
surely an asymptotically stable observer for the system Ω,
given a particular realization of the disturbances {wk}k∈N
and {vk}k∈N.

We now present the following theorem on the robustness
of the estimator (6), characterized by a bound on the error in
the estimates generated by (6) with respect to the estimates
generated by the reference estimator (9):

Theorem 3: (Robustness of W2-MHE). Under Assump-
tions 1, 3, 5, and 7, given the estimate sequences {µk}k∈N



generated by (6) and {µ̄k}k∈N generated by the reference
estimator (9), with µ0 = µ̄0, we have W2(µk, µ̄k) ≤
c
(2)
f

c
(1)
f

WCk + ηlw
√
N

c
(1)
f

(W + V )Ck, for all k ∈ N, where Ck =∑k
`=1(

c
(1)
f

1−ηl )
`.

VI. A KL-MOVING-HORIZON ESTIMATOR

In this section, we derive a moving-horizon estima-
tor, which we refer to as KL-MHE, to generate a se-
quence of probability distributions {µk}k∈N. Using the KL-
divergence DKL as the choice of pseudo-distance in the
moving-horizon formulation (5). to obtain:

µk ∈ arg min
µ∈P(X)

DKL(µ‖f0#µk−1) + ηEµ
[
GNk
]
,

given µ0 ∈ P(X).
(10)

We represent the above in a compact form using the
proximal operator on P(X) associated with Eµ

[
GNk
]

and
w.r.t. the KL-divergence, which we denote as follows:

µk ∈ proxDKL
ηGN

k

(f0#µk−1) , k > 0. (11)

We note that any local minimizer µk of (10) is a critical
point of the objective functional, and, therefore, it satisfies:

c =
δ

δµ

[
DKL(µ‖f0#µk−1) + ηEµ

[
GNk
]] ∣∣∣∣

µ=µk

,

where c is a constant (from the constraint
∫
X dµ(x) = 1, for

µ ∈ P(X), due to which the first variation is defined up to
an additive constant). From the above, we get:

c = log

(
ρk(x)

f0#ρk−1(x)

)
+ ηGNk (x),

where for any ` ∈ {0, 1, . . .}, ρ` is the density function cor-
responding to the measure µ`. Therefore, the corresponding
recursive update scheme for the density function is given by:

ρk(x) = ck (f0#ρk−1(x)) exp
(
−ηGNk (x)

)
, (12)

where ck is the normalization constant. We note that the
above is a particle filter formulation, with the horizon
cost GNk defining the weighting function. Implementable
filters are obtained by a Sequential Monte Carlo method,
see [21]. We now present the asymptotic stability result for
KL-MHE:

Theorem 4: (Asymptotic stability of KL-MHE). The esti-
mator (10), under Assumptions 1 to 4, is an asymptotically
stable observer for the system Σ.

VII. SIMULATION RESULTS

In this section, we present results from numerical simula-
tions of the estimators studied in this paper. The simulations
were performed in MATLAB (version R2017a) on a 2.5 GHz
Intel Core i5 processor.

We considered the following nonlinear discrete-time sys-
tem:

x1(k + 1) = x1(k) + τx2(k),

x2(k + 1) = x2(k)− τ x1(k)

1 + |x1(k)|2 + |x2(k)|2
+ wk,

y(k) = x1(k) + vk,

with τ = 0.1, wk and vk are i.i.d disturbances, sampled
uniformly from the intervals [−0.1, 0.1] and [−0.15, 0.15]
respectively.

We first present the simulation results for W2-MHE. We
ran 30 trials of the estimator (8) on the same measurement
sequence, with randomly generated initial conditions and
over a time horizon of length T = 100. The length of the
moving horizon was chosen to be N = 10. Figure 1 contains
the plots of the mean of the estimates along with the true
states. The root mean squared error (RMSE) for the mean
state estimate sequences were found to be z1RMSE = 0.0856
and z2

RMSE = 0.0846 for the estimates of x1 and x2, re-
spectively. The average time for computing the state estimate
through the minimization (8) using the fminunc function in
MATLAB was observed to be tcomp = 0.012± 0.02s.

Fig. 1. Mean state estimates from 30 trials of W2-MHE.

We then implemented the estimator (10) with 30 samples,
over a time horizon of length T = 100. The length of the
moving horizon was chosen to be N = 10. Figure 2 contains
the plots of the mean of the estimates along with the true
states. The root mean squared error (RMSE) for the mean
state estimate sequences were found to be z1RMSE = 0.1073
and z2

RMSE = 0.1144 for the estimates of x1 and x2,
respectively. The average run-time for the minimization (10)



by a resampling method was observed to be tcomp = (4.8±
0.4)× 10−4s.

In simulation, with 30 samples, we find that the W2-MHE
performs better with respect to the root mean squared error,
while the KL-MHE is much faster. The performance of the
KL-MHE is determined by the richness of the sample set
and effectiveness of the resampling procedure, choices that
depend on context and experience. In this manuscript, we did
not attempt to investigate improvements in performance with
respect to these choices. The performance of W2-MHE does
not necessarily improve with the richness of the sample set,
but for systems for which ΣT

−1(y0:T ) is not a singleton, a
richer sample set allows for a more complete characterization
of the set of feasible estimates.

Fig. 2. Mean state estimates from KL-MHE with 30 samples.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we laid out a unifying distributional frame-
work for moving-horizon estimation. We have clearly es-
tablished the connection between the classical notion of
strong local observability and the stability of moving hori-
zon estimation, for nonlinear discrete-time systems. As an
extension to this work, we intend to include distributional
constraints in the moving horizon estimation framework.
Future work will be devoted to more extensive simulations to
more closely characterize the performance of the proposed
estimators in practice. Another important consideration in the
estimation problem is the rate of convergence of the observer,
and it is of interest to obtain convergence rate bounds for
the moving-horizon estimators proposed in this paper. A
comparison of the rates of convergence for various choices

of the (pseudo) metric in the unifying MHE formulation will
be also undertaken in our future work.
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