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General Setting

Given:

⌦ ⇢ Rd – Compact, P(⌦) – Space of probability measures

µ⇤ 2 P(⌦) – Target distribution

Directly sampling from µ⇤ is di�cult

Objectives:

End goal: Sample N points optimally from µ⇤

Sample from a known µ
0

, transport samples to µ⇤

Minimize net cost of transport – Optimal Transport

Use a distributed algorithm to update samples {x
1

(k), . . . , xN(k)}
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Motivation

Engineering Applications: Deployment problems (sensor/robot networks)

Sampling algorithms
(Markov Chain Monte Carlo)

i.i.d sampling

Realizations of a Markov chain

Decentralized

Not e�cient w.r.t. transport cost

Optimal Transport

Optimal sampling

Mapped by an OT map

Centralized computation

Transport cost minimized
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Optimal transport

c(x , y) - Unit cost of transport from x 2 ⌦ to y 2 ⌦

µ, ⌫ 2 P(⌦)

Monge (deterministic) formulation

Minimize cost over maps that transport µ to ⌫

CM(µ, ⌫) = inf
T :⌦!⌦

T
#

µ=⌫

Z

⌦⇥⌦

c(x ,T (x))dµ(x)

Kantorovich (probabilistic) formulation

Minimize over probabilistic couplings of µ and ⌫

CK (µ, ⌫) = inf
⇡2⇧(µ,⌫)

Z

⌦⇥⌦

c(x , y)d⇡(x , y)

Question: When are they equivalent?
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On Monge and Kantorovich formulations

Some assumptions:

Cost c is continuous

c is a metric on ⌦

c satisfies a twist condition:

8y
1

, y
2

, c(x , y
1

)� c(x , y
2

) has no critical point

The measure µ is atomless:

µ({x}) = 0 8x 2 ⌦

What we get:

Solution to the Kantorovich problem exists and is unique

Minimizer of Kantorovich solves the Monge problem:

⇡⇤ concentrated over a T ⇤ that solves Monge

Allows us to work with the relaxation,

i.e. the Kantorovich formulation
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Kantorovich Duality

Primal problem

CK (µ, ⌫) = min
⇡2⇧(µ,⌫)

Z

⌦⇥⌦

c(x , y)d⇡(x , y)

Dual problem for metric costs c:

K (µ, ⌫) = max
�2L1

µ,⌫(⌦)

Z

⌦

�dµ�
Z

⌦

�d⌫

s.t. |�(x)� �(y)|  c(x , y) 8x , y 2 ⌦

Strong duality: K (µ, ⌫) = CK (µ, ⌫)

Derivative: �K
�µ = �̄ The Kantorovich potential
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Interpolation between measures

Objective: Construct a sequence µ
0

! µ
1

! . . . ! µ⇤

Consider the scheme:

µk+1

2 argmin
⌫

C (µk , ⌫) + C (⌫, µ⇤)

s.t. C (µk , ⌫)  ✏

Corresponding sample update:

xk+1 2 argmin
y

c(xk , y) + c(y ,T ⇤
k (x

k))

s.t. c(xk , y)  ✏

T ⇤
k is the OT map from µk to µ⇤

But T ⇤
k is hard to compute ) Use the dual formulation
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Sample update from Kantorovich Dual

Consider the scheme:

µk+1

2 argmin
⌫

C (µk , ⌫) + K (⌫, µ⇤)

s.t. C (µk , ⌫)  ✏

Transport vector field: v = � (Hc)�1 r�k (as ✏ ! 0 above)

(�k = �K(·,µ⇤
)

�µ

����
µk

and Hc(x) = r2

2

c(x , x))

But c is not di↵erentiable at (x , x) – due to assumptions on c

Sample update scheme:

xk+1 2 argmin
z

c(xk , z) + �k(z)

s.t. c(xk , z)  ✏
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Distributed algorithm to compute �

Samples x = (x
1

, . . . , xN)

{Vi}Ni=1

– Voronoi partition of ⌦

Nearest-neighbor graph G = (V ,E )

Approximate � by a simple function � =
PN

i=1

�i 1Vi

Kantorovich Dual

max
(�1,...,�N

)

NX

i=1

�i

✓
1

N
� µ⇤(Vi )

◆

s.t. |�i � �j |  c(xi , xj) 8(i , j) 2 E

Primal-Dual Algorithm

�i (k + 1) = �i (k)� ⌧ (L��)
i + ⌧Qi

Qi =
1

N
� µ⇤(Vi )

�ij(k + 1) = [�ij(k) + ⌧ rij(k)]
+

rij(k) = |�i (k)� �j(k)|2 � c2(xi , xj)
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Simulation Results
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Continuum limit N ! 1 and ✏ ! 0

Transport equation:

@t⇢+r · (⇢v) = 0 (⇢ is the density of measure µ)

Distributed Optimal Transport (DOT):

Approximate c by a smooth c̃ around (x , x)

DOT velocity field: v = (Hc̃)�1 r�̄ (ideal)

�̄ – Steady state of primal-dual flow

Primal flow:

@t� = r · (�r�) + (⇢� ⇢⇤),

�r� · n = 0 on @⌦

Dual flow (second-order):

@t� = [✓]+� ,

@t✓ = ��(t, x)✓ +
1

2

�
|r�|2 � |rc̃ |2

�
,
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DOT Flow

To investigate:

Convergence of primal-dual flow

Convergence of on-the-fly implementation: with v = � (Hc̃)�1 r�t

(Use �t in place of �̄ – Do not wait for p-d flow to converge)

Optimality conditions for Kantorovich dual problem:

�r ·
�
�̄r�̄

�
= ⇢� ⇢⇤,

�̄r�̄ · n = 0, on @⌦,

�̄ � 0, |r�̄|  |rc̃ |, �̄(|r�̄|� |rc̃ |) = 0,

Lemma (Convergence of primal-dual flow)

The solutions (�t ,�t) to the primal-dual flow converge in the L2-sense to
the optimality conditions
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DOT Flow

Theorem (Convergence of DOT flow)

Solutions ⇢t of the DOT flow with v = � (Hc̃)�1 r�t converge in
the L2-norm to ⇢⇤
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