Distributed Optimal Transport

Vishaal Krishnan and Sonia Martínez

Mechanical and Aerospace Enginering University of California, San Diego

IEEE CDC 2018

General Setting

Given:

- $\Omega \subset \mathbb{R}^d$ Compact, $\mathcal{P}(\Omega)$ Space of probability measures
- $\mu^* \in \mathcal{P}(\Omega)$ Target distribution
- Directly sampling from μ^* is difficult

Objectives:

- **End goal:** Sample *N* points *optimally* from μ^*
- Sample from a known μ_0 , transport samples to μ^*

- Minimize net cost of transport Optimal Transport
- \bullet Use a distributed algorithm to update samples $\{x_1(k), \ldots, x_N(k)\}$

Motivation

Engineering Applications: Deployment problems (sensor/robot networks)

Sampling algorithms (Markov Chain Monte Carlo)

- i.i.d sampling
- Realizations of a Markov chain
- Decentralized
- Not efficient w.r.t. transport cost

Optimal Transport

- Optimal sampling
- Mapped by an OT map
- **Centralized computation**
- Transport cost minimized

Optimal transport

- $c(x, y)$ Unit cost of transport from $x \in \Omega$ to $y \in \Omega$
- \bullet $\mu, \nu \in \mathcal{P}(\Omega)$

Monge (deterministic) formulation

Minimize cost over maps that transport μ to ν

$$
C_M(\mu,\nu)=\inf_{\substack{T:\Omega\to\Omega\\T_{\#}\mu=\nu}}\int_{\Omega\times\Omega}c(x,\,T(x))d\mu(x)
$$

Kantorovich (probabilistic) formulation

Minimize over probabilistic couplings of μ and ν

$$
C_K(\mu,\nu)=\inf_{\pi\in\Pi(\mu,\nu)}\int_{\Omega\times\Omega}c(x,y)d\pi(x,y)
$$

Question: When are they equivalent?

On Monge and Kantorovich formulations

Some assumptions:

- Cost *c* is continuous
- **c** is a metric on Ω
- **e** *c* satisfies a **twist** condition:

 $\forall y_1, y_2, c(x, y_1) - c(x, y_2)$ has no critical point

• The measure μ is atomless:

 $\mu({x})=0 \forall x \in \Omega$

What we get:

- Solution to the Kantorovich problem exists and is unique
- Minimizer of Kantorovich solves the Monge problem:

 π^* concentrated over a T^* that solves Monge

• Allows us to work with the relaxation,

i.e. the Kantorovich formulation

Kantorovich Duality

Primal problem

$$
C_K(\mu,\nu)=\min_{\pi\in\Pi(\mu,\nu)}\int_{\Omega\times\Omega}c(x,y)d\pi(x,y)
$$

Dual problem for metric costs *c*:

$$
K(\mu, \nu) = \max_{\phi \in L^1_{\mu, \nu}(\Omega)} \int_{\Omega} \phi d\mu - \int_{\Omega} \phi d\nu
$$

s.t. $|\phi(x) - \phi(y)| \le c(x, y) \,\forall x, y \in \Omega$

• Strong duality: $K(\mu, \nu) = C_K(\mu, \nu)$

• Derivative:
$$
\frac{\delta K}{\delta \mu} = \bar{\phi}
$$
 The Kantorovich potential

Relevant Literature

OT and Interpolation

- McCann, "*Existence and uniqueness of monotone measure- preserving maps*", 1995 (Parametrized family of transport maps)
- Benamou, Brenier, "*A Computational Fluid Mechanics solution to the M-K mass transfer problem*", 2000 (Transport PDE/Hamilton-Jacobi)
- Chen, Georgiou, Pavon, "*On the relation between optimal transport and Schrodinger bridges ...*", 2014 (Stochastic control)
- Cuturi, Doucet, *Fast Computation of Wasserstein Barycenters*, 2014 (Computing interpolants)

Applications in multi-robot systems

Bandyopadhyay, Chung, Hadaegh, "*Probabilistic Swarm Guidance using Optimal Transport*", 2014 (Deployment problem)

Interpolation between measures

Objective: Construct a sequence $\mu_0 \rightarrow \mu_1 \rightarrow \ldots \rightarrow \mu^*$

Consider the scheme:

$$
\mu_{k+1} \in \arg\min_{\nu} C(\mu_k, \nu) + C(\nu, \mu^*)
$$

s.t.
$$
C(\mu_k, \nu) \le \epsilon
$$

Corresponding sample update:

$$
x^{k+1} \in \arg\min_{y} c(x^k, y) + c(y, T_k^*(x^k))
$$

s.t. $c(x^k, y) \le \epsilon$

 T_k^* is the OT map from μ_k to μ^*

But T_k^* is hard to compute \Rightarrow Use the dual formulation

Sample update from Kantorovich Dual

Consider the scheme:

$$
\mu_{k+1} \in \arg\min_{\nu} C(\mu_k, \nu) + K(\nu, \mu^*)
$$

s.t. $C(\mu_k, \nu) \le \epsilon$

Transport vector field: $\mathbf{v} = - (Hc)^{-1} \nabla \phi_k$ (as $\epsilon \to 0$ above)

$$
(\phi_k = \frac{\delta K(\cdot,\mu^*)}{\delta \mu}\bigg|_{\mu_k} \text{ and } H_c(x) = \nabla_2^2 c(x,x))
$$

• But *c* is **not differentiable** at (x, x) – due to assumptions on *c*

Sample update scheme:

$$
x^{k+1} \in \arg\min_{z} c(x^k, z) + \phi_k(z)
$$

s.t. $c(x^k, z) \le \epsilon$

Distributed algorithm to compute ϕ

- \bullet Samples $\mathbf{x} = (x_1, \ldots, x_N)$
- $\{V_i\}_{i=1}^N$ Voronoi partition of Ω
- Nearest-neighbor graph $G = (V, E)$
- Approximate ϕ by a simple function $\phi = \sum_{i=1}^{N} \phi^{i} 1\!\!1_{\mathcal{V}_{i}}$

Kantorovich Dual

$$
\max_{(\phi^1,\ldots,\phi^N)} \sum_{i=1}^N \phi^i \left(\frac{1}{N} - \mu^*(\mathcal{V}_i) \right)
$$

s.t. $|\phi^i - \phi^j| \le c(x_i, x_j) \ \forall (i,j) \in E$

Primal-Dual Algorithm

$$
\phi^i(k+1) = \phi^i(k) - \tau (L_{\lambda}\phi)^i + \tau Q_i
$$

\n
$$
Q_i = \frac{1}{N} - \mu^*(\mathcal{V}_i)
$$

\n
$$
\lambda_{ij}(k+1) = [\lambda_{ij}(k) + \tau r_{ij}(k)]^+
$$

\n
$$
r_{ij}(k) = |\phi^i(k) - \phi^j(k)|^2 - c^2(x_i, x_j)
$$

Simulation Results

Continuum limit $N \to \infty$ and $\epsilon \to 0$

Transport equation:

 $\partial_t \rho + \nabla \cdot (\rho \mathbf{v}) = 0$ (ρ is the density of measure μ)

Distributed Optimal Transport (DOT):

- Approximate *c* by a smooth \tilde{c} around (x, x)
- **DOT** velocity field: $\mathbf{v} = (H\tilde{c})^{-1} \nabla \bar{\phi}$ (ideal)
- \bullet $\overline{\phi}$ Steady state of primal-dual flow

DOT Flow

To investigate:

- Convergence of primal-dual flow
- Convergence of **on-the-fly implementation**: with $\mathbf{v} = -(\mathbf{H}\tilde{\mathbf{c}})^{-1} \nabla \phi_t$

(Use ϕ_t in place of $\bar{\phi}$ – Do not wait for p-d flow to converge)

Optimality conditions for Kantorovich dual problem:

$$
-\nabla \cdot (\bar{\lambda} \nabla \bar{\phi}) = \rho - \rho^*,
$$

\n
$$
\bar{\lambda} \nabla \bar{\phi} \cdot \mathbf{n} = 0, \text{ on } \partial \Omega,
$$

\n
$$
\bar{\lambda} \geq 0, \quad |\nabla \bar{\phi}| \leq |\nabla \tilde{\epsilon}|, \quad \bar{\lambda}(|\nabla \bar{\phi}| - |\nabla \tilde{\epsilon}|) = 0,
$$

Lemma (Convergence of primal-dual flow)

The solutions (ϕ_t, λ_t) *to the primal-dual flow converge in the* L^2 -sense to *the optimality conditions*

DOT Flow

Theorem (Convergence of DOT flow)

Solutions ρ_t *of the DOT flow with* $\mathbf{v} = - (H\tilde{c})^{-1} \nabla \phi_t$ converge in *the* L^2 *-norm to* ρ^*

Thank You