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General Setting

Given:
e Q C R? — Compact, P(Q2) — Space of probability measures
e u* € P(Q) — Target distribution
@ Directly sampling from p* is difficult

Objectives:

End goal: Sample N points optimally from p*

Sample from a known pyp, transport samples to p*

uo—. ‘u1 —_— e ——» ”*

b

x1(0), ..., XN(O)—— .-t — X1, .., XN’

Minimize net cost of transport — Optimal Transport

Use a distributed algorithm to update samples {xi(k),...,xn(k)}



Motivation

Engineering Applications: Deployment problems (sensor/robot networks)

Sampling algorithms Optimal Transport
(Markov Chain Monte Carlo) o Optimal sampling
o i.i.d sampling e Mapped by an OT map
@ Realizations of a Markov chain o Centralized computation
® Decentralized @ Transport cost minimized
o Not efficient w.r.t. transport cost
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Optimal Transport Theory

Optimal transport

@ c(x,y) - Unit cost of transport from x € Qtoy € Q
/L
o u,veP) LT

Monge (deterministic) formulation

Minimize cost over maps that transport p to v >

Cu (s, v) = ?ISQLQ g SO0 TODdu(x) )
# U=V 5 5 4 2 “6 IR ]

Kantorovich (probabilistic) formulation O

Minimize over probabilistic couplings of p and v

i
Celir) = inf [ clxydnixy) j /

meN(p,v)
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Question: When are they equivalent?



Optimal Transport Theory

On Monge and Kantorovich formulations

Some assumptions:
@ Cost c is continuous
@ cis a metric on Q
@ c satisfies a twist condition:
Vy1, ya, €(x,y1) — ¢(x, y») has no critical point
@ The measure y is atomless:
u({x})=0VxeQ

What we get:
@ Solution to the Kantorovich problem exists and is unique
@ Minimizer of Kantorovich solves the Monge problem:
7" concentrated over a T* that solves Monge
@ Allows us to work with the relaxation,

i.e. the Kantorovich formulation



Optimal Transport Theory

Kantorovich Duality

Primal problem

Ck(p,v) = min /stz c(x,y)dn(x,y)

m€N(p,v)

Dual problem for metric costs c:

K(p,v) = max /(bd,u /qﬁdu

¢EL], ,
|p(x) )| < celx,y) Vx,y € Q

e Strong duality: K(u,v) = Cx(u,v)

e Derivative: ‘;—5 = ¢ The Kantorovich potential



Optimal Transport Theory

Relevant Literature

OT and Interpolation
@ McCann, “Existence and uniqueness of monotone measure- preserving
maps”, 1995 (Parametrized family of transport maps)

@ Benamou, Brenier, " A Computational Fluid Mechanics solution to the
M-K mass transfer problem”, 2000 (Transport PDE/Hamilton-Jacobi)

@ Chen, Georgiou, Pavon, “On the relation between optimal transport
and Schrodinger bridges ...", 2014 (Stochastic control)

o Cuturi, Doucet, Fast Computation of Wasserstein Barycenters, 2014
(Computing interpolants)

Applications in multi-robot systems

e Bandyopadhyay, Chung, Hadaegh, "“Probabilistic Swarm Guidance
using Optimal Transport”, 2014 (Deployment problem)
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Algorithm and Simulation Results

Interpolation between measures

Objective: Construct a sequence pg — ft1 — ... — p*

Consider the scheme:

ft1 € argmin Cuy, v) + C(v, 1)

sit. Cluk,v) <e

Corresponding sample update:

. T(x)
1 argmin c(x¥, ) + cly. T7 ()
y
s.t. C(Xk7y) <e Geodesic

T is the OT map from py to p*

But T, is hard to compute = Use the dual formulation



Algorithm and Simulation Results

Sample update from Kantorovich Dual

Consider the scheme:

pt1 € argmin C(pg, v) + K(v, %)

sit. Cluk,v) <e

Transport vector field: v = — (Hc) ™" Ve (as e — 0 above)

(b = IKCuT) | apd He(x) = Vic(x, x))

op
ok

@ But c is not differentiable at (x, x) — due to assumptions on ¢

Sample update scheme:
X € argmin c(x*, z) + ¢i(2)
z

st c(xK z)<e




Algorithm and Simulation Results

Distributed algorithm to compute ¢

@ Samples x = (x1,...,xn)

o {V;}¥ | — Voronoi partition of Q

o Nearest-neighbor graph G = (V/, E)

e Approximate ¢ by a simple function ¢ = Z,N:1 @' 1y,

Primal-Dual Algorithm
Kantorovich Dual

N ¢'(k+1)=¢'(k) = 7(Lrg) +7Qi
max Zqﬁi <1 _ M*(V’)> Q= 1 ()
(@heoM) = AN =y W

st 6/ — ¢ < clxiog) Vi) e E | Aulk 1) =Rsk) +7r(K)]
(k) = 16/(k) = SR — ()




Algorithm and Simulation Results

Simulation Results
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Convergence Results for PDE Flow

Continuum limit N — oo and e — 0

Transport equation:

Op+V-(pv) =0  (pis the density of measure )

Distributed Optimal Transport (DOT):

o Approximate ¢ by a smooth & around (x, x)
e DOT velocity field: v = (H&) ' V¢ (ideal)

e ¢ — Steady state of primal-dual flow

Primal flow: Dual flow (second-order):

. . o\ = [0]F,
e = V- (AV9) + (p — p°), A 1
AVG =000 09 0,0 = —4(t, )0 + 5 (IVol - [Ve?),




Convergence Results for PDE Flow

To investigate:
@ Convergence of primal-dual flow
o Convergence of on-the-fly implementation: with v = — (HE)71 Vo

(Use ¢, in place of ¢ — Do not wait for p-d flow to converge)

Optimality conditions for Kantorovich dual problem:
~V - (AV9) = p—p",
AVo-n=0, ondQ,
A>0, Vol <|VEl,  M|Vel—|VeE]) =0,

Lemma (Convergence of primal-dual flow)

The solutions (¢¢, ;) to the primal-dual flow converge in the L?-sense to
the optimality conditions




Convergence Results for PDE Flow

DOT Flow

Theorem (Convergence of DOT flow)

Solutions p; of the DOT flow with v = — (HZ) ™" V¢, converge in

the L2-norm to p*
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Convergence Results for PDE Fl

Thank You
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