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Abstract— The analysis and design of scalable distributed
algorithms for spatial deployment is an important problem in
the area of multi-robot systems. For very large swarms, this can
be prescribed via macroscopic objectives on the behavior of the
swarm, and accomplished by local sensing and communication
between agents. In this paper, we address the problem of
distributed optimal transport, with the aim of minimizing
the cost of deployment of large swarms. Working with a
macroscopic PDE model of swarms given by the continuity
equation, we first formulate a general deployment objective,
and formulate deployment algorithms as convergent gradient
flows. Then, we design and analyze a novel Laplacian-based
distributed algorithm and a corresponding weighted gradient
flow for optimal transport. We conclude the manuscript with
simulations that illustrate our results.

I. INTRODUCTION

The development of low-cost sensor, communication and
computational systems makes foreseeable in the near future
the deployment of large teams of multi-robot systems in
diverse areas such as remote monitoring, manufacturing, and
construction. As the number of robotic agents increases, the
design of efficient control algorithms for these poses new
challenges, starting with the choice of appropriate mathe-
matical abstractions for them. The need for parsimonious
descriptions of swarms, together with the fact that tasks for
these systems are more likely to be specified at a high level,
calls for the use of macroscopic models. This is more so
in scenarios that involve interaction with human operators,
wherein the complexity of the description has to be kept
minimal. However, such a setting introduces new theoretical
challenges in the analysis and control of these systems, and
we place this work in this broader context.

Literature review: The problems of deployment and for-
mation control of groups of robots have been extensively
studied in the past [1], [2]. The approaches range from
Voronoi-based deployment [3] to deployment using potential
fields [4], among other methods. An important characteristic
of these works is the use of discrete models, where the
system is seen as the finite collection of N robots, and their
evolution is modeled by a system of ODEs. Having a limited
set of resources makes the specific configuration of each
robot important. However, as the size of the group increases,
the relative importance of a single robot decreases, and a
macroscopic description is sufficient to capture the quality
of swarm deployment. This motivates the macroscopic or
PDE-based approach adopted in this paper. One notable
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approach to large swarm deployment problem makes use
of Markov chains [5]–[7], where the swarm configuration
is described through the partitioning of the spatial domain
into a finite number of disjoint subregions, on which a
probability distribution is defined. Other works on large-scale
swarm deployment have used continuum models for swarms.
In [8], [9], the authors address the problem of deployment
in the absence of position information. In related subsequent
work [10], where agents have access to position information,
the authors address the problem of local density estimation
and velocity field generation in the context of robot swarms.
Another notable approach in this regard involves modeling
the swarm collective dynamics by the reaction-advection-
diffusion PDE [11]–[13], wherein the desired coverage pro-
files are obtained by tuning the parameters in the model
and/or by boundary control.

Optimal transport theory [14] deals with the problem of
optimally rearranging a given probability distribution onto
another while minimizing the cost of transport. The solutions
to this problem are referred to as optimal transport plans, and
specified as a joint distribution with marginals equal to the
original distributions. Although the original problem has a
static description, it allows for a time/path-dependent formu-
lation [15], which also takes the form of a stochastic optimal
control problem [16]. Optimal transport theory provides a
natural framework for the problem of minimizing the cost
of deployment of swarms. However, despite the availability
of powerful mathematical tools in this area, its adaptation
to the control of robot swarms has remained limited. The
papers [17] and [18] approach this very question of optimal
swarm motion. While in the first paper the problem is
formulated as one of optimal control, the second is placed in
the framework of optimal transport. However, the previous
works present certain limitations, either because they require
a centralized offline planning phase [17], or because of costly
information exchange required among agents [18].

Contributions: This paper contributes to the body of work
on large-scale swarm deployment in the following ways.
First, we begin by presenting a PDE-based swarm model
while providing a formal justification for it. Then, we encode
the general deployment objective via suitable performance
metrics, which leads to the design of deployment algorithms
via gradient flows. We point out how these flows are naturally
distributed for some standard metrics over the space of
probability measures, and prove formally their convergence
to the target distributions of interest. This is followed by
the main contribution of this paper, which is a scalable
Laplacian-based distributed algorithm that solves the Monge-
Kantorovich optimal transport problem for a wide class



of transport cost functions. This algorithm, in conjunction
with a weighted gradient flow is shown to achieve swarm
deployment while minimizing the transport cost.

II. NOTATION AND PRELIMINARIES

In what follows, we let ∇ =
(

∂

∂x1
, . . . ∂

∂xn

)
denote the

gradient operator in Rn when acting on real-valued functions.
As a shorthand, we let ∂

∂ z (·) = ∂z(·) for a variable z.
For any x ∈ Ω ⊂ Rd , we denote by Br(x) an open d-
ball of radius r > 0. Let µ ∈ P(Ω) be an absolutely
continuous probability measure on Ω ⊂ Rd . We denote
by ρ the corresponding density function, where d µ = ρ dvol,
with vol being the Lebesgue measure. Let F : P(Ω) →
R be a functional such that F(µ) =

∫
Ω

g(x) d µ(x), we
denote by δF

δ µ
(x) = g(x) the derivative of F with respect

to µ , in the distributional sense [19]. The set of func-
tions on a measurable space U , given by Lp(U) = { f :
U →R |‖ f‖Lp(U) = (

∫
U | f |p dvol)1/p < ∞}, constitute the Lp

space, where ‖ ·‖Lp(U) is the Lp norm. Of particular interest
is the L2 space, or the space of square-integrable functions.
In this paper, we denote by ‖ f‖L2(U) the L2 norm of f
with respect to the Lebesgue measure, and by ‖ f‖L2(U,µ) =(∫

Ω
| f |2 d µ

)1/2 the weighted L2 norm. We denote by 〈 f ,g〉
the inner product of functions f ,g : Ω→R, given by 〈 f ,g〉=∫

Ω
f gdvol. The Sobolev space W 1,p(U) over a measurable

space U is defined as W 1,p(U) = { f : U → R |‖ f‖W 1,p =

(
∫

U | f |p +
∫

U |∇ f |p)1/p < ∞}. Of particular interest is the
space W 1,2, also called the H1 space.

III. SWARM MODEL AND DEPLOYMENT OBJECTIVE

In this section, we present a macroscopic model for large
swarms, starting with the dynamics of a single agent and
making a continuum approximation to the associated PDE
dynamics. We then specify the macroscopic deployment
objective, for which we present novel distributed algorithms
in following sections.

Let the configuration of the swarm at any given instant of
time t be denoted by the tuple (I ,{xi(t)}i∈I ,{vi(t)}i∈I )
consisting of agent indices, their positions and velocities
(with |I |=N). We assume that agents are distributed across
a domain Ω⊂Rd , where Ω is a bounded and open set. That
is, xi(t) ∈ Ω and vi(t) ∈ Rd for all i ∈I and any t ∈ R≥0.
For simplicity, the dynamics for an agent i at xi ∈Ω is given
by ẋi = vi. In this work, we consider large swarms, where N
is large, and are interested not in the relative positions of
individual agents—as they are not considered significant—
but in the macroscopic description of the swarm. Therefore,
we abstract a multi-agent swarm at any instant t by means of
a swarm distribution µt ∈P(Ω), where P(Ω) is the space
of absolutely continuous probability distributions on Ω. In
other words, we consider the distribution to be normalized
by the number of agents, that is

∫
Ω

d µ = 1, so that µ can be
interpreted as a probability distribution.

We assume vi = v(xi), where v is a velocity field over
Ω. Let Φ be the flow associated with this field v, such
that d

d t Φt(x) = v(t,Φt(x)) and Φ0(x) = x, for x ∈ Ω. The

flow Φ describes the trajectories of the agents in the swarm,
in the sense that Φt(x) represents the position at time t of the
agent starting from x at t = 0. The evolution of the swarm
distribution µt ∈P(Ω) in the limit N → ∞, subject to the
flow Φ, is given by the continuity equation:

∂tρ +∇ · (ρv) = 0, (1)

where d µt = ρt dvol, and vol is the Lebesgue measure. We
will also require that ρv ·n= 0 on the boundary ∂Ω, in order
to confine the swarm in the domain Ω.

Our objective is to design a class of distributed algorithms
in the continuous domain for swarm deployment, which
transform the initial distribution µ0 of the swarm into a
desired distribution µ∗, as t→∞, subject to the dynamics (1).
As usually done in the discrete formulation, we aim to
design these distributed algorithms by means of gradient
flows minimizing an appropriate potential function.

IV. GRADIENT FLOW AS A DEPLOYMENT MECHANISM

In this section, we present deployment algorithms as
gradient flows of over the space of probability distributions.
We then show formally how these algorithms converge to
the desired swarm distribution. We take as examples the L2

distance and KL-divergence which lead to a distributed
gradient flow, and helps set the stage for next sections.

Given a desired distribution µ∗ ∈P(Ω), and an arbitrary
other one µ ∈P(Ω) the following potential functions serve
to quantify how close µ is to µ∗:

VL2(µ) =
1
2

∫
Ω

|ρ−ρ
∗|2 dvol,

VKL(µ) =
∫

Ω

ρ log
(

ρ

ρ∗

)
dvol .

where recall that ρ and ρ∗, are such that ρ dvol = d µ ,
respectively. The previous functionals are convex with a
minimizer at µ∗, and the corresponding expressions for their
gradient flows are the following:

vL2(x) =−∇(ρ−ρ
∗), vKL(x) =−∇

(
ρ

ρ∗

)
, x ∈Ω.

These expressions (or a discretization of them) only require
local communication of each agent at x with others at y such
that |x−y| ≤ r, for r > 0. Therefore, they result in a naturally
distributed computation. In addition, agents need knowledge
of the target swarm distribution µ∗ as well as access to their
position information.

The following theorem establishes a fundamental conver-
gence result for gradient flows on convex potentials. We do
not present proofs of the results in this paper, for the sake
of brevity. We refer the reader to an extended version [20]
for detailed proofs, which will appear in a forthcoming
publication.

Assumption 4.1: (Well-posedness of solutions). We as-
sume that the desired distribution µ∗ is absolutely continuous
(with density function ρ∗ in H1(Ω)) and supported in a
compact subset of Ω. Further, we assume that the solutions ρt



to (1) for the gradient flow are well-posed and lie the the
Sobolev space H1(Ω). •

Theorem 4.2: (Convergence of gradient flow). Let V :
P(Ω)→R be a convex potential functional with minimizer
at µ∗ satisfying Assumption 4.1. Define the gradient flow
v =−∇

(
δV
δ µ

)
and consider the swarm dynamics (1) together

with the condition ρv ·n = 0 on the boundary ∂Ω. Then, µt
converge to µ∗ as t→∞ in the L2 sense, i.e., the solutions ρt
to (1) satisfying Assumption 4.1 on well-posedness converge
in the L2-norm to ρ∗. •

V. DISTRIBUTED OPTIMAL TRANSPORT

In this section, we develop a distributed algorithm for
optimal transport, which is implemented by the swarm as
a gradient flow. We begin by presenting the standard formu-
lation of the Monge-Kantorovich optimal transport problem,
which we then reduce to a form that allows us to design our
distributed algorithm. For more information about optimal
transport we refer the reader to [14].

The cost of optimal transport from a probability measure µ

on Ω to another measure ν on Ω, is given by:

C(µ,ν) = inf
π∈Π(µ,ν)

∫
Ω×Ω

c(x,y)dπ(x,y), (2)

where c(x,y) is the unit cost of transport between x and y.
Here, the cost c(x,y) is a non-negative, lower semicontinuous
function. The subset Π(µ,ν) ⊂P(Ω×Ω) consists of the
joint measures with marginals µ and ν , and dπ(x,y) is the
amount of mass transported from x to y. This is commonly
referred to as the Monge-Kantorovich optimal transport
problem. We state the following lemma on the convexity
of the cost functional C.

Lemma 5.1: (Convexity of C(µ,ν), Theorem 4.8 [14]).
The optimal transport cost C(µ,ν) in (2) is convex in µ

and ν . •
The primal optimization problem (2) is a linear programming
problem (note that the minimization is in π and the objective
function is linear in π). The dual problem, called Kantorovich
duality, is given by:

K(µ,ν) = sup
φ∈L1

µ (Ω);ψ∈L1
ν (Ω)

∫
Ω

φ(x)dµ(x)+
∫

Ω

ψ(y)dν(y)

s.t φ(x)+ψ(y)≤ c(x,y), ∀x,y ∈Ω.

and the duality gap is zero, C(µ,ν) = K(µ,ν) (Theo-
rem 5.10, [14]). The maximizers of this problem are pairs of
functions (φ ,ψ) that occur at the boundary of the inequality
constraint and are such that:

φ(x) = inf
y∈Ω

(c(x,y)−ψ(y)) ,

ψ(y) = inf
z∈Ω

(c(z,y)−φ(z)) .
(3)

In other words, a solution pair consists of conjugate func-
tions, which by definition satisfy the previous equations. We
write ψ = φ c, to denote that ψ is conjugate of φ , and we
have:

φ(x) = inf
y∈Ω

[
c(x,y)− inf

z∈Ω
(c(y,z)−φ(z))

]
. (4)

The dual problem can be now reduced to:

K(µ,ν) = sup
φ∈L1

µ (Ω)

∫
Ω

φ(x)dµ(x)+
∫

Ω

φ
c(y)dν(y). (5)

A. Gradient Flow based on Kantorovich duality

In this section, we first reformulate the dual optimal trans-
port problem for metric costs c(x,y). We then exploit this
formulation to design a distributed algorithm that achieves
optimal transport. We essentially assume that the cost of
transport is non-negative, symmetric and that the cost of
transport between any two points, while stopping by multiple
waypoints is at least as much as the cost of direct transport.
The following lemma will allow us to reduce the Kantorovich
dual problem for metric costs.

Lemma 5.2: (Metric costs). If the cost c is a metric and φ

satisfies (4), then |φ(x)−φ(y)| ≤ c(x,y) for all x,y∈Ω. Also,
φ c =−φ and |∇φ | ≤ |∇c|, where ∇c|x = ∇yc(x,y)

∣∣
y=x. •

We can now rewrite the Kantorovich dual problem (5) in the
following form:

K(µ,ν) = sup
φ

∫
Ω

φ(ρ−ρ
∗)dvol

s.t. |∇φ | ≤ |∇c|.
(6)

Clearly, the objective function in the above problem is
linear in φ and the feasible set corresponding to the con-
straint |∇φ | ≤ |∇c| is convex.

The Lagrangian corresponding to the Kantorovich dual
problem (6) is given by:

L (φ ,λ ) =
∫

Ω

φ(ρ−ρ
∗)− 1

2

∫
Ω

λ (|∇φ |2−|∇c|2), (7)

where all the integrals are with respect to the Lebesgue
measure, and λ ≥ 0 is the Lagrange multiplier for the
constraint, which we have rewritten as |∇φ |2 ≤ |∇c|2.

Here, we obtain a crucial insight that the stationary con-
dition for the above problem is a Poisson equation with
a weighted Laplace operator (and a Neumann boundary
condition), as stated in the following lemma. This will even-
tually allow us to implement a Laplacian-based distributed
algorithm for optimal transport.

Lemma 5.3: (Optimality conditions). The necessary and
sufficient conditions for a feasible solution φ̄ of (6) to be
optimal are:

−∇ ·
(
λ̄∇φ̄

)
= ρ−ρ

∗,

λ̄∇φ̄ ·n = 0, on ∂Ω,

λ̄ ≥ 0, |∇φ̄ | ≤ |∇c|, λ̄ (|∇φ̄ |− |∇c|) = 0,

(8)

where λ̄ is the optimal Lagrange multiplier λ for the
constraint |∇φ | ≤ |∇c|, and they correspond to the saddle
point of the Lagrangian (7). •

We now define the primal-dual dynamics to converge
to the saddle point of the Lagrangian (7), where we use
second-order dynamics for the dual variable. The primal-dual
dynamics, owing to its structure (involving the Laplacian) is
suitable for a distributed implementation.



To obtain the second order primal-dual dynamics, we
consider an augmented Lagrangian:

La(φ ,λ ,∂tλ ) = L (φ ,λ )+
1
2

∫
Ω

|∂tλ |2,

where L is as defined in (7) and the added penalty term is for
the time derivative of λ which is introduced as an additional
variable. With γ = (λ ,∂tλ ) as the new dual variable, we
construct the dynamics for a gradient ascent on La w.r.t φ

(the primal variable) and a weighted gradient descent on La
w.r.t γ (the new dual variable), given by:

∂tφ = ∇ · (λ∇φ)+(ρ−ρ
∗),

λ∇φ ·n = 0, on ∂Ω,

∂tλ = [θ ]+
λ
,

∂tθ =−β (t,x)θ +
1
2
(
|∇φ |2−|∇c|2

)
,

(9)

where β (t,x) is a tunable parameter controlling the rate of
convergence for the second-order dual dynamics, and

[ f ]+
λ
=

{
f , if λ > 0,
max{0, f}, if λ = 0,

(10)

is the projection operator. We have used the projection
operator to explicitly impose the constraint λ ≥ 0 for all t ∈
R≥0 and x ∈Ω.

It can be seen that ∂tφ = δLa
δφ

and ∂tγ = A δLa
δγ

with,

A =

[
0 1λ

−1 −β

]
,

where mλ is an operator such that mλ f = m[ f ]+
λ

. We note
that for any y ∈ R2, y>Ay≤ 0 (since As =

A+A>
2 is negative

semi-definite). Thus, we have a gradient ascent w.r.t. φ and
a weighted gradient descent w.r.t. γ = (λ ,∂tλ ).

Assumption 5.4: (Well-posedness of solutions). We as-
sume that the PDE (9) is well-posed and that the solu-
tions (φt ,λt ,θt) lie in the Sobolev space H1(Ω) for every
time t. •

Lemma 5.5: (Convergence of primal-dual dynamics).
The solutions (φt ,λt ,θt) to the primal-dual dynamics (9)
satisfying Assumption 5.4, converge in the L2-norm to the
optimality condition (8) as t→ ∞, for any given ρ,ρ∗. •
The condition on β (t,x) at any t ∈ R≥0 and x ∈ Ω which
allows for the convergence of the primal-dual based gradient
flow is specified in Theorem 5.8 that follows later in this
section. However, we state here that the condition on β (t,x)
is one of a lower bound on its value, which can be computed
by the agents using only local information (this will be clear
from the statement of Theorem 5.8).

Lemma 5.6: The velocity field:

v =−∇φ̄ , (11)

where φ̄ is a solution to (6), implemented in the continuity
equation (1), provides a gradient flow on C(µ,µ∗) w.r.t µ .•

Even though the algorithm (9) results in a distributed im-
plementation of optimal transport, we would like the agents
to implement a solution online. In this way, we do not wait

for φ to converge to φ̄ and then implement the gradient flow
velocity v = −∇φ̄ , but instead set the velocity control law
as v=−λ

ρ
∇φ , weighted by λ

ρ
, where φ and λ are the current

local estimates supplied by the distributed algorithm (9)
and ρ is the current local density measurement/estimate. We
note that since the velocity is for an agent, v is defined only
where ρ > 0, and thus v =−λ

ρ
∇φ is well-defined.

Assumption 5.7: (Well-posedness of solutions). We as-
sume that the desired distribution µ∗ is absolutely continuous
(with density function ρ∗ in H1(Ω)) and supported in a
compact subset of Ω. Further, we assume that the solu-
tions (φt ,λt ,θt) to (9) and ρt to (1) for the gradient flow are
well-posed, continuous and lie the the Sobolev space H1(Ω)
for every t ∈ R≥0. •

Theorem 5.8: (Convergence of optimal transport). Let
the primal-dual dynamics (9) be such that β (t,x)|θ(t,x)| ≥
max

{
0, 1

2 |∇φ |2 + 1
2 sgn(θ)

(
|∇φ |2−|∇c|2

)}
. Consider the

gradient flow with the velocity v = −λ

ρ
∇φ , with λ and

φ from the primal-dual dynamics (9). Then, the solutions
of (1) with this velocity field satisfying the Assumption 5.7,
converge to µ∗ in the L2 sense. That is, the solutions ρt
to (1) satisfying Assumption 5.7 converge in the L2-norm
to ρ∗, while the solutions to the primal-dual dynamics (9)
converge in the L2-norm to the optimality condition (8). •

Remark We note that the condition on the
adaptive tunable parameter β , that β (t,x)|θ(t,x)| ≥
max

{
0, 1

2 |∇φ |2 + 1
2 sgn(θ)

(
|∇φ |2−|∇c|2

)}
, suggests

that as |θ | → 0, we could potentially have β → ∞.
However, we point out here that we need to interpret the
whole term βθ as the actual input to the algorithm (9),
with u(t,x) = β (t,x)θ(t,x) and the condition will be
that |u| > max

{
0, 1

2 |∇φ |2 + 1
2 sgn(θ)

(
|∇φ |2−|∇c|2

)}
when θ 6= 0, which can stay bounded provided the
expression on the right hand side stays bounded. In other
words, there is no unboundedness issue introduced close to
the equilibrium.

B. Discrete Implementation

We now present a consistent discretization scheme for (9)
that can be implemented by a robotic swarm. The PDEs on
the spatial domain are discretized onto the graph underlying
the network of robots in the swarm, where any two robots
at x ∈ Ω and y ∈ Ω separated by a distance |x− y| < r are
neighbors in the network graph.

Gradient: To estimate the local gradient of a function ϕ ,
robot i at xi receives the value of ϕ from its neighbors j, esti-
mates the directional derivatives by ϕ(x j)−ϕ(xi)

|x j−xi| = ∇ϕ · x j−xi
|x j−xi| .

An estimate of the local gradient is obtained by combining
multiple directional derivative estimates.

Weighted Laplacian: We now present a discretization
scheme for the term ∇ · (λ∇ϕ) as in the primal dynamics,
which is a λ -weighted Laplace operator acting on ϕ . We
refer the reader to Section 5.2 in [9] for a detailed treatment.

We first consider a symmetric positive definite kernel Λ :
Ω×Ω→R≥0. The Λ-weighted average variation in φ around
a point x ∈Ω, averaged over a ball Br(x) of radius r > 0 and



centered at x is given by:

1
|Br(x)|

∫
Br(x)

Λ(x,y)(ϕ(y)−ϕ(x))dvol(y).

The weighted Laplace operator is obtained as the limit of
the above average as r → 0. We first let λ (x) = Λ(x,x)
and ∇λ (x) = 1

2 (∂1Λ + ∂2Λ)(x,x) (∂1 and ∂2 refer to the
partial derivatives w.r.t. the first and second arguments re-
spectively), and we get:

∇ · (λ∇ϕ) = lim
r→0

1
|Br(x)|

∫
Br(x)

Λ(x,y)(ϕ(y)−ϕ(x))dvol(y).

We employ the above fact; that is, that the λ -weighted
Laplace operator can be viewed as the limit of the weighted
average of the local variation, to construct a discretization
scheme.

Owing to the symmetry of Λ, we have ∂1Λ(x,x) =
∂2Λ(x,x), and by a Taylor expansion around (x,x), we get:

Λ(y,y) = Λ(x,x)+2∂1Λ(x,x) · (y− x)+O(|y− x|2)

⇒ ∂1Λ(x,x) · (y− x)≈ 1
2
(Λ(y,y)−Λ(x,x)) .

From the above, we obtain:

Λ(x,y) = Λ(x,x)+∂1Λ(x,x) · (y− x)+O(|y− x|2)

≈ Λ(x,x)+
1
2
(Λ(y,y)−Λ(x,x)) =

1
2
(Λ(y,y)+Λ(x,x)) .

(12)

We now construct a discrete (matrix) version of the kernel Λ,
which will be a symmetric matrix Λd . For an agent i at x∈Ω

and a j at y ∈ Ω, let Λd
i j = Λ(x,y). In implementing the

discretized version of the primal-dual dynamics, an agent i
will update and use the weights Λd

i j for its neighbors j.
By means of this discretization scheme, we approximate ∇ ·
(λ∇ϕ)(x) ≈ (L

Λd ϕ)i, where L
Λd is the weighted Laplacian

matrix of the underlying network graph.
To update the weights Λd

i j, every agent i first updates Λd
ii

according to (9) (where the weights Λii correspond to the
dual variable λ and (9) is discretized in time by a finite
difference method), communicates with neighbors j in the
network graph, acquires Λd

j j and sets:

Λ
d
i j =

1
2

(
Λ

d
ii +Λ

d
j j

)
.

The equation above is simply the discrete version of (12).
Time update: We note that the computation of the deriva-

tive in time of any function, say ϕ , on-board the robots
while they are in motion, needs to be changed to the total
derivative dϕ

dt = ∂tϕ +∇ϕ ·v. For any time update specified
in (9) (which are specified as partial derivatives in time),
while being implemented on-board, the transport term ∇φ ·v
must be added.

The Neumann boundary condition imposed on the PDE
is naturally attained in a graph discretization and does
not require additional specification. The Neumann boundary
condition λ∇φ ·n = 0 implies that

∫
Ω

∇ ·(λ∇φ) =
∫

∂Ω
λ∇φ ·

n = 0, by the divergence theorem. What this means for the
Laplacian matrix of the graph is that the all-ones vector is

in the null space of the Laplacian matrix, which is naturally
obtained without any additional specification.

Algorithm 1 Distributed optimal transport

Input: Desired density ρ∗, g(x) = |∇c(x,x)|, integration
time step h
Each agent i at time t:
Requires: Current position xi, local density estimate ρ(xi)
Communicate with neighbors j, acquire φ j,Λ

d
j j, and θ j

Weight update:
For every neighbor j, set Λd

i j→ 1
2

(
Λd

ii +Λd
i j

)
Primal update:
φi→ φi+h

[
∑ j∈Ni Λd

i j (φ j−φi)+ρ(xi)−ρ∗(xi)+(∇φ)i ·v
]

Dual update:
Λd

ii→max{0,Λd
ii +h(θi +(∇Λ)i ·v)}

θi→ θi +h
( 1

2 |(∇φ)i|− 1
2 g(xi)−βθi +(∇θ)i ·v

)
Update current velocity:

vi→
Λd

ii
ρ(xi)

(∇φ)i

VI. SIMULATION RESULTS

We now present simulation results for the gradient flow
with the primal-dual dynamics (9) for distributed optimal
transport. We note that the results presented are from the sim-
ulation of the PDE (1) under the gradient flow corresponding
to the primal-dual dynamics (9), over a stationary grid and
not an agent-based simulation of the swarm. Figure 1 shows
the evolution of the distribution of the swarm over time.
The grayscale images show the distribution of the swarm in
the domain, with darker shades representing higher density
of agents at any given location. The domain is a 50× 50
grid, and the PDE (9) was discretized over the grid. The
initial distribution value was randomly generated (a random
number was generated by the rand function in MATLAB
for each cell of the grid and then normalized to obtain the
probability distribution over the grid). The target density
was for the swarms to converge to a bounded polygonal
domain, as seen in the final subfigure in Figure 1, where
the distribution is uniform in the interior of the polygon and
zero outside. The cost of transport was chosen to be ci j = 1
between neighboring cells i and j in the grid.

As we had noted in the previous section, there exists
a fundamental trade-off between optimality and an on-the-
fly implementation of the distributed optimal transport. We
sought to investigate the extent of this trade-off in simula-
tion by running the primal-dual algorithm (9) for multiple
iterations n between two consecutive motion steps. The
assumption is that the distributed computation is many times
faster than the motion of the agents. Figure 2 is the plot of
the L1-density error e(t) =

∫
Ω
|ρ−ρ∗|dvol as a function of

time, for various iteration steps of the primal-dual dynamics
(to converge to the optimal gradient flow velocity) per motion
step. We notice an improvement in the tracking performance
(as measured by e(t)) with only a few steps of the primal-
dual dynamics per motion step, and the convergence to



Fig. 1: Distribution of the swarm at various time instants of
deployment

true optimal transport (in the sense of decay rate of the
error e(t)) is obtained with approximately an order (n≈ 101)
of magnitude time scale separation between computation and
motion.

Fig. 2: Plot of density error
∫

Ω
|ρ − ρ∗|dvol with time for

various iteration steps n of the primal-dual dynamics per
motion step. The plot shows the rate of convergence to the
optimal transport gradient flow (represented by n = 15)

VII. CONCLUSIONS

Working with a macroscopic PDE model of large swarms
specified by the continuity equation, we formulated general
deployment problems for swarms as a gradient flow and
proved a fundamental convergence result. We then designed
and analyzed a novel scalable distributed algorithm for
gradient flow based on optimal transport theory.

There remain many open lines of inquiry for future work.
Firstly, we note that the second-order PDE-based primal-dual
dynamics introduced in this paper is novel, and we proved the

convergence of solutions satisfying some reasonable assump-
tions. Future work involves a detailed investigation of the
notion and regularity of solutions to the second-order PDE-
based primal-dual dynamics. Characterizing analytically the
trade-off on optimality due to the on-the-fly implementation
of the distributed algorithm for optimal transport is also an
interesting open problem of current focus.
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