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Abstract: In this work, we address the problem of identifying a set of nodes that are critical to the
rate of convergence of consensus dynamics in large-scale spatial networks. By assuming that nodes
are uniformly distributed over a spatial region and that these can communicate with others in an
infinitesimally small neighborhood, we start by formulating the consensus problem by means of a partial
differential equation involving the Laplace operator, subject to Neumann boundary condition. As with
its finite-dimensional counterpart, we observe how the performance of these dynamics is directly related
to the second smallest eigenvalue of the Laplace operator over the domain of interest. We then reduce the
critical node set identification problem to that of finding a ball of fixed radius, whose removal minimizes
the rate of convergence over the residual domain. This leads us to consider two functional optimization
problems. First, we treat the problem of determining the second smallest eigenvalue for a fixed domain
by minimizing an energy functional. We characterize the critical points of the energy functional, and then
construct the gradient dynamics that converge to the set of critical points. We then prove that the only
locally asymptotically stable critical point is the second eigenfunction of the Laplace operator. Building
on these results, we consider the critical ball identification problem, provide a characterization of the
critical points, and define gradient dynamics to converge asymptotically to these points.
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1. INTRODUCTION

With novel advances in low-cost sensing, communication, and
computational systems, large-scale spatial networks are becom-
ing increasingly pervasive. Much work has been devoted to the
analysis and design of networks composed of a small number
of agents; however, the available results do not translate well to
large-scale groups. In a large-scale system, we are generally
concerned with questions related to the macroscopic perfor-
mance of the network. Thus, specifying the global state of the
network through the states of individual nodes is needlessly
complicated. Guaranteeing the performance of each individual
agent is also purposeless, as failures in a small subset of agents
should be both acceptable (due to high redundancy) and un-
avoidable. This highlights the need to adopt alternative mod-
eling frameworks and develop new control-theoretical tools to
account for the characteristic (spatial) properties of large-scale
networked systems. Such a framework could also be beneficial
to solving design problems such as the selection of nodes in
a network for improved controllability, robustness, or observ-
ability, objectives which routinely result in hard combinatorial
optimization problems. Motivated by this, we adopt here a con-
tinuum modeling framework for large-scale spatial networks,
and study the question of critical node-set selection for a spatial
consensus problem.

The general problem of optimizing a performance metric with
respect to a network design parameter has received much atten-
tion. One class of problems, to which the current work belongs,
is that of critical node identification. This is concerned with
identifying those nodes in the network whose removal results

in the maximum deterioration of network performance with
respect to a chosen metric. Investigations adopting various no-
tions of criticality exist in the literature (Ventresca and Aleman,
2015). Although the word “critical” has been used in several
contexts, the theoretical problems that underlie these investi-
gations are not necessarily similar, and in many cases, vastly
different.

Other related problems include the leader selection problem,
where a given metric is optimized by the choice of a leader
node or a set of leader nodes. This has been explored in
a variety of contexts, for improved network controllability
(Clark et al., 2012; Ji et al., 2006; Commault and Dion, 2013),
and to minimize mean-square deviation from consensus in the
presence of noise (Lin et al., 2014; Patterson and Bamieh,
2010), to name a few. Yet another is the optimal edge-weight
selection problem, where a cost is optimized by tuning edge
weights. The problem of improving the rate of convergence for
consensus dynamics by edge-weight selection has been studied
in (Xiao and Boyd, 2004; Boyd, 2006; Hao and Barooah, 2012).

Prior works can be found in the literature on approximating
large networks by weighted graphs with an underlying set of
continuum cardinality. The book (Lovász, 2012) contains a
treatment of such an approach, where large networks are ap-
proximated by limit objects, called graphons, of convergent
sequences of large dense graphs (under appropriately defined
notions of distance between graphs and convergence). In this
approach, the nodes in the network are usually indexed by
the unit interval [0,1]. Extending this idea to spatial networks,
where the nodes are embedded in a domain Ω ∈RN in physical
space, the nodes can be thought to be indexed by their posi-



tions x ∈Ω. Combining these notions in the context of network
consensus dynamics, the objects of interest are the Laplacian of
the graph, and its continuum counterpart, the Laplace operator
on the domain. Theoretical results concerning the convergence
of the graph Laplacian to the Laplace operator can be found
in (Belkin and Niyogi, 2005) and (Belkin and Niyogi, 2007).
These also motivate the formulation adopted in this paper to
study large-scale spatial networks.

The general problem of optimizing a performance metric with
respect to a network design parameter has received much atten-
tion. One class of problems, to which the current work belongs,
is that of critical node identification. It is concerned with iden-
tifying those nodes in the network whose removal results in the
maximum deterioration of network performance with respect to
a chosen metric. In (Ventresca and Aleman, 2015), (Arulselvan
et al., 2009) and (Sheng et al., 2006), the authors investigate
the problem of identifying nodes whose deletion maximizes
disconnectivity between nodes.

There have been severals attempts to investigate problems link-
ing the shape of a domain with the sequence of eigenvalues
of the Laplace operator, for various boundary conditions, al-
though, to the best of our knowledge, there is no general result
on the critical subset identification for general domains. The
book (Henrot, 2006) contains an overview of the literature on
extremum problems for eigenvalues of elliptic (e.g. Laplace)
operators.

In this paper, we are interested in the problem of identifying
critical nodes for network consensus, nodes whose removal
leads to maximum deterioration in the rate of convergence for
the residual network. We make a continuum approximation
to model the consensus dynamics by the heat equation with
Neumann boundary condition, where the rate of convergence
of solutions to steady state is governed by the smallest positive
(also the second smallest) eigenvalue of the Laplace operator.
It is worth noting that in the finite dimensional counterpart,
the second smallest eigenvalue of the Laplacian matrix of a
graph plays a special role, it denotes the algebraic connectivity
of the graph and is significant in many respects. We formulate
the critical node set identification problem in large-scale spatial
networks as a hole placement problem, such that the optimal
placement of the hole in the domain minimizes the smallest pos-
itive eigenvalue of the Laplace operator for the residual domain.
The problem of optimizing the (smallest positive) eigenvalue
with respect to hole position presents some inherent difficulties
in that it is non-convex, thereby limiting our goal at the outset
to achieving convergence to a local optimum. We consider two
functional optimization problems. First, we treat the problem of
determining the second smallest eigenvalue for a fixed domain.
This is achieved by minimizing an energy functional (given by
the Min-max theorem), characterize the critical points of the
energy functional, and construct the gradient dynamics in a
Banach space that converge to the set of critical points. We then
prove that the only locally asymptotically stable critical point
for the dynamics is the second eigenfunction of the Laplace
operator. Building on these results, we consider the optimal
hole placement problem, provide a characterization of the crit-
ical points in the interior of the domain, and define gradient
dynamics to converge asymptotically to these points.

This paper is organized as follows. Section 3 introduces the
preliminaries of the functional form of Laplacian consensus
dynamics. The optimization problem is formulated in Section 4,

followed by the main analysis in Section 5. We then conclude
with the summary and future directions in Section 7.

2. NOTATION

In this section, we present some of the notation used in the
rest of the paper. We denote by 1n the vector of ones 1>n =
(1, . . . ,1)> ∈ Rn. We denote by Br(x) the open ball of ra-
dius r > 0 centered at x ∈ RN , and by |Ω| the Lebesgue mea-
sure of the set Ω ⊂ RN . The set of square-integrable functions
on Ω is represented by L2(Ω). In other words, L2(Ω) = { f :
Ω→ R |

∫
Ω
| f |2dν < ∞}, where dv is the standard Lebesgue

measure. By extension, L2(Ω,ρ) represents the set of square-
integrable functions with respect to the measure ρdν , where ρ

is a positive real-valued function on Ω. When clear from
the context, and with a slight abuse of notation, we will
denote

∫
Ω

f dν simply as
∫

Ω
f , for some f ∈ L2(Ω). For

f ,g ∈ L2(Ω) (resp. f ,g ∈ L2(Ω,ρ)), we let 〈 f ,g〉 =
∫

Ω
f gdν

(resp. 〈 f ,g〉L2(Ω,ρ) =
∫

Ω
f gρdν) denote the inner product and

‖ f‖2 = 〈 f , f 〉 denote the corresponding induced norm. Finally,
we denote by H1(Ω) = { f ∈ L2(Ω) |

∫
Ω
|∇ f |2dν < ∞}.

3. LAPLACIAN CONSENSUS IN FUNCTIONAL FORM

In this section, we present some preliminaries on the Laplacian
consensus problem in functional form. We start introducing
the Laplacian consensus dynamics in the discrete setting (on
a graph), and then use a convergence result from (Belkin
and Niyogi, 2005) in the limit as n→ ∞ to approximate the
Laplacian matrix by the Laplace operator on the spatial domain
(Evans, 1998).

Let V = {1, . . . ,n} be a set of n agents, which are dis-
tributed uniformly over a bounded open set Ω ⊂ RN (with C1-
boundary ∂Ω) and with positions {x1, . . . ,xn} ⊆ Ω. We define
a graph G = (V ,Edisk(h)) over the set of agents, for some
h ∈ R>0, where Edisk(h) is the set of undirected edges defined
as follows: (i, j) ∈ Edisk(h) if and only if |xi − x j| < h. Let
Lh

n be the symmetric graph Laplacian matrix associated with
G . That is, Lh

n = Dh
n − Ah

n, where Ah
n is the adjacency matrix

associated with G and Dh
n is the diagonal degree-matrix (Bullo

et al., 2009). The adjacency matrix Ah
n can thus be thought to be

extracted from a uniform kernel Kh as (Ah
n)i j = Kh(|xi− x j|2).

We further assume that the uniform kernel above is approxi-
mated by an appropriate smooth kernel. The continuous-time
Laplacian consensus on a function φ d : R→ Rn is given by:

d
dt

φ
d =−Lh

nφ
d . (1)

As n→ ∞ and h→ 0, the graph Laplacian Lh
n converges to the

Laplace operator L in Ω (Belkin and Niyogi, 2005; Singer,
2006), where:

L u =−∆u. (2)
In this way, given a functional (continuum) approximation of
φ d , in the form of φ : R×Ω→ R, we obtain the functional
form of the consensus dynamics as follows:

∂tφ =−L φ = ∆φ . (3)
This PDE is accompanied by an additional Neumann boundary
condition motivated as follows. Let md = ∑

n
i=1 φ d

i = 1>n φ d be
the sum of the consensus variable across a discrete set of agents.
From (1), we have:



d
dt

md = 1>n
d
dt

φ
d =−1>n Lr

nφ
d = 0,

since 1n ∈ ker(Lr
n). Equivalently, in the functional setting, the

sum md converges (as n → ∞ and h → 0) to the integral
m =

∫
Ω

φ dν . From (2) and (3), and using the Divergence
Theorem (Evans, 1998), we have:

∂tm =
∫

Ω

∂tφ dν =
∫

Ω

∆φ dν =
∫

∂Ω

∇φ ·n dS.

Thus, we impose the Neumann boundary condition on the
boundary ∂Ω for the functional φ to conserve m (s.t. ∂tm = 0):

∇φ ·n = 0, on ∂Ω. (4)
In other words, the Neumann boundary condition imposes the
constraint that the flux across the boundary is zero.

For analysis purposes, consider the energy function of the
discrete-agent setting for the consensus problem:

Ed =
1
2 ∑

i
∑

j
(φ d

i −φ
d
j )

2 =
1
2
〈φ d ,Lh

nφ
d〉.

In the functional setting, the corresponding energy functional
takes the form:

E =
1
2
〈φ ,L φ〉L2(Ω).

The time derivative of E under the boundary condition (4) can
be computed to be:

d
dt

E =
1
2

∂t

(∫
Ω

φL φ dν

)
=

1
2

∂t

(∫
Ω

|∇φ |2dν

)
=
∫

Ω

∇φ ·∇(∂tφ)dν =−
∫

Ω

|L φ |2dν

=−〈L φ ,L φ〉L2(Ω).

(5)

Note that the operator L is elliptic. From the theory of elliptic
partial differential operators (Evans, 1998), for the Neumann
problem, the operator L has an infinite sequence of eigenvalues
0 = µ1 ≤ µ2 ≤ . . .≤ µm ≤ . . ., whose corresponding eigenfunc-
tions {ψi}∞

i=1 form an orthonormal basis for L2(Ω).

Remark 1. The Laplace operator L with Neumann bound-
ary condition is self-adjoint, which implies that the algebraic
multiplicities of the eigenvalues are equal to their geometric
multiplicities. •
Therefore, we can express φ(t,x) as:

φ(t,x) = ∑
i

ci(t)ψi(x).

Now, we obtain:
L φ(t,x) = ∑

i
ci(t)µiψi(x).

Substituting in (5) and from the ordering of eigenvalues, we
obtain the relation:

d
dt

E ≤−2µ2E,

which implies that E(t) ≤ e−2µ2tE(0). We see that the second
eigenvalue µ2(L (Ω)) = µ2 governs the convergence rate of the
functional consensus dynamics.

Using the Min-max theorem (Evans, 1998) for the operator L ,
one can determine:

µ2(L (Ω)) = inf
ψ∈{ψ1}⊥

〈ψ,L ψ〉L2(Ω)

〈ψ,ψ〉L2(Ω)

, (6)

where {ψ1}⊥ = {ψ ∈ H1(Ω) |ψ 6= 0,
∫

Ω
ψ1ψ dν = 0}, and

ψ1 is constant, the eigenfunction corresponding to µ1 = 0.

This implies that {ψ1}⊥ = {ψ ∈H1(Ω) |
∫

Ω
ψ dν = 0}. There-

fore, using the Divergence theorem and applying the Neumann
boundary condition, Equation (6) becomes:

µ2(L (Ω)) = inf∫
Ω ψdν=0,

ψ 6=0

∫
Ω
|∇ψ|2dν∫

Ω
|ψ|2dν

.

The above can be reformulated as:

µ2(∆(Ω)) = inf∫
Ω ψdν=0,∫

Ω |ψ|2dν=1

∫
Ω

|∇ψ|2dν . (7)

4. PROBLEM FORMULATION

Here, we define the notion of criticality that we adopt in this
paper. Critical agents are those located in Ω, whose removal
results in the minimum rate of convergence for the residual
network. In other words, these are the agents whose removal
will affect more adversely the rate of convergence of consensus
dynamics, making them the most valuable agents to be pro-
tected.

More precisely, this amounts to identifying a set K⊂Ω of given
measure |K|= c > 0 such that µ2(∆(Ω\K)) is an infimum.

For a fixed K, from Equation (7), again with a Neumann bound-
ary condition on ∂K, we obtain the following minimization
problem over ψ:

µ2(∆(Ω\K)) = inf∫
Ω\K ψdν=0,∫

Ω\K |ψ|2dν=1

∫
Ω\K
|∇ψ|2dν .

Further, the problem of identifying the critical nodes K∗ can be
formulated as:

K∗ = arg inf
K⊂Ω,
|K|=c

inf∫
Ω\K ψdν=0,∫

Ω\K |ψ|2dν=1

∫
Ω\K
|∇ψ|2dν .

We restrict the search to a class of subsets K = Br(x) = {y ∈
Ω | |y− x|< r} ⊂Ω, open balls of radius r (such that |Br(x)|=
c). This reduces the search space to Ω̃r = {x ∈Ω |dist(x,∂Ω)>
r}, and the problem is reformulated as:

x∗ = arg inf
x∈Ω̃r

inf∫
Ω\Br(x) ψdν=0,∫

Ω\Br(x) |ψ|
2dν=1

∫
Ω\Br(x)

|∇ψ|2dν . (8)

Note that, in this setting, we assume that our domain Ω is
such that there is no ball of radius r whose removal leads to a
disconnection of Ω into several connected components. In other
words, we assume that the residual set stays connected.

5. FUNCTIONAL OPTIMIZATION TO DETERMINE THE
MOST CRITICAL NODES

In this section, we present the algorithm to determine the
most critical nodes in the network, in a functional optimization
framework. First, we begin with the analysis of the eigenvalue
problem (7) (the inner optimization problem in (8)) for a fixed
D. Its understanding will help us build a gradient dynamics that
can be employed to solve the full critical node identification
problem (8). In what follows, the proofs of the results are
omitted and will appear in a forthcoming publication.



5.1 Eigenvalue determination problem for a fixed domain

We first consider the eigenvalue problem (7), characterize the
critical points, construct and analyze a projected gradient dy-
namics to converge to the infimum. We write the optimization
problem (for the smallest positive eigenvalue of the Laplace
operator on a domain D with a C1, Lipschitz boundary) as:

inf
ψ∈H1(D)

∫
D
|∇ψ|2,

s.t
∫

D
|ψ|2 = 1,

∫
D

ψ = 0,

∇ψ ·n = 0 on ∂D.

Let SD = {ψ ∈ H1(D) |
∫

D |ψ|2 = 1,
∫

D ψ = 0,∇ψ · n =
0 on ∂D}. With this, we can rewrite the above problem as
follows:

inf
ψ∈SD

∫
D
|∇ψ|2.

Critical points Here, we analyze the critical points ψ∗ of
the objective functional J(ψ) =

∫
D |∇ψ|2 in SD. Let δψ ∈

H1(D) be a perturbation of ψ∗. The first variation of the La-
grangian L(ψ,µ,λ ) = J(ψ) + µ

(
1−

∫
D |ψ|2

)
+ λ

∫
D ψ , at a

critical point ψ∗ is zero (where
∫

D |ψ|2 = 1 and
∫

D ψ = 0 are
the constraints, as ψ ∈ SD and the Neumann boundary con-
dition is assumed implicitly.) Thus,

〈
δL
δψ

,δψ

〉
(ψ∗,µ∗,λ ∗) =

2
∫

D ∇ψ∗ ·∇(δψ)− 2µ∗
∫

D ψ∗δψ +λ ∗
∫

D δψ = −2
∫

D(∆ψ∗+

µ∗ψ∗ − 1
2 λ ∗) δψ = 0, for any δψ (note that the Neumann

boundary condition was used in obtaining the equation.) Addi-
tionally, we also have

〈
∂L
∂ µ

,δ µ

〉
(ψ∗,µ∗,λ ∗) = 1−

∫
D |ψ∗|2 =

0, and
〈

∂L
∂λ

,δλ

〉
(ψ∗,µ∗,λ ∗) =

∫
D ψ∗ = 0. Thus, the critical

points of the objective functional ψ∗ ∈ SD are characterized
by:

∆ψ
∗+µ

∗
ψ
∗− 1

2
λ
∗ = 0.

Integrating the previous equation over D and using the Neu-
mann boundary condition, we obtain λ ∗ = 0. Therefore, the
critical points ψ∗ satisfy:

∆ψ
∗+µ

∗
ψ
∗ = 0. (9)

We now have the following lemma:
Lemma 1. Of all the critical points ψ∗ of the functional J(ψ),
the second eigenfunction ψ2 of ∆(D) is the only minimizer
of J(ψ) in SD. •

Projected gradient dynamics We now provide dynamics for
convergence to the minimum value of J(ψ) in SD. For smooth
one-parameter families of functions {ψ(t,x)}t∈R≥0 (with x ∈
D), the derivative of the objective functional J is given by:

dJ
dt

=

〈
δJ
δψ

,∂tψ

〉
= 2

∫
D

∇ψ ·∇(∂tψ) =−2
∫

D
∂tψ(∆ψ).

Thus, a gradient-descent dynamics is:

∂tψ =−1
2

δL
δψ

= ∆ψ.

Now, we project this primal dynamics onto the tangent space
of the set SD. For ψ ∈SD, we require that 〈ψ,∂tψ〉 = 0 and∫

D ∂tψ = 0, which are satisfied if (this will be shown through
Lemma 2):

∂tψ = ∆ψ− 〈∆ψ,ψ〉
‖ψ‖2 ψ = ∆ψ−〈∆ψ,ψ〉ψ,

since ‖ψ‖ = 1 for ψ ∈SD. Further, using J(ψ) = −〈∆ψ,ψ〉,
we get the projected gradient dynamics:

∂tψ = ∆ψ + J(ψ)ψ. (10)

Lemma 2. The set SD is invariant with respect to the projected
gradient dynamics (10). •
The equilibria ψ∗ of (10) are given by:

∆ψ
∗+ J(ψ∗)ψ∗ = 0,

and ψ∗ also satisfies the Neumann boundary condition ∇ψ∗= 0
on ∂D. Clearly, J(ψ∗) is an eigenvalue, and so let µ∗ = J(ψ∗).
It is also clear that the equilibria of the projected gradient
dynamics are also the critical points of the functional J over
the set SD. We now have the following convergence result for
solutions to the projected gradient dynamics.
Lemma 3. The solutions to the projected gradient dynam-
ics (10) in SD converge in the L2-norm to the set of equilibria
of (10). •
We now have the following stability result for the equilibria of
the linearized projected gradient dynamics (10).
Lemma 4. The second eigenfunction ψ2 is the only locally
asymptotically stable equilibrium in SD for the projected gra-
dient dynamics. •

5.2 Critical node set identification

We now consider the full optimization problem:
x∗ = arg inf

x∈Ω̃r

µ2(x)

= arg inf
x∈Ω̃r

inf∫
Ω\Br(x) ψ=0,∫

Ω\Br(x) |ψ|
2dν=1

∫
Ω\Br(x)

|∇ψ|2dν . (11)

We will assume that the second eigenvalue µ2 is simple for
the domains under consideration. Eigenvalues are differentiable
with respect to domain perturbations for domains with Lips-
chitz boundaries (Henrot, 2006).

Critical points We now characterize the critical points of the
functional µ2 in the interior of the domain.
Lemma 5. The first-order condition for a critical point x∗ of
the functional µ2 in the interior of the domain is given by:

µ
∗
2

(∫
∂Br(x∗)

|ψ∗2 |2n
)
=
∫

∂Br(x∗)
|∇ψ

∗
2 |2n, (12)

where (µ∗2 = µ2(x∗),ψ∗2 ) is the second eigenpair and n is the
outward normal to ∂Br(x∗). •

Projected gradient dynamics We now construct the dynamics
to converge to a critical point of µ2 in the interior of the
domain. Note that the function µ2(x) is not known explicitly for
a general domain Ω \Br(x). We reformulate the optimization
problem (8) as:

x∗ = arg inf
x∈Ω̃r

µ2(x) = arg inf
x∈Ω̃r

inf∫
Ω\Br(x) ψ=0,∫

Ω\Br(x) |ψ|
2=1

∫
Ω\Br(x)

|∇ψ|2dν

= arg1 inf
(x,ψ)∈Ω̃×Ψ(x)

∫
Ω\Br(x)

|∇ψ|2dν ,

(13)

where the set Ψ(x) is defined as:



Ψ(x) = {ψ ∈ H1 (Ω\Br(x)) |
∫

Ω\Br(x)
ψ = 0,∫

Ω\Br(x)
|ψ|2 = 1}.

(14)

and arg1 indicates the first argument x in (x,ψ). We also define
the set Ψ = ∪x∈Ω̃r

Ψ(x).

Let {x(t)}t∈R≥0 be a smooth curve in Ω̃r and {ψ(t,y)}t∈R≥0

(with y ∈ Ω \ Br(x(t)),) a smooth one-parameter family of
functions on Ω \ Br(x(t)). We now consider the following
dynamics:

dx
dt

= v =

{
vint , x ∈ int Ω̃r

vint − (vint · ñ)ñ, x ∈ ∂ Ω̃r

vint =
∫

∂Br(x)
|∇ψ|2n− J(ψ)

∫
∂Br(x)

|ψ|2n,

∂tψ = ∆ψ + J(ψ)ψ +aψ +b,
∇ψ ·n = 0, on ∂Ω∪∂Br(x),

(15)

where n and ñ denote the outward normals to ∂Br(x) and
∂ Ω̃r respectively, a =− 1

2 v ·
(∫

∂Br(x) |ψ|
2 n
)

and b =− 1
|Ω|−c v ·(∫

∂Br(x) ψ n
)

, with c = |Br(x)|, for all x ∈ Ω̃r.

We now have the following result on the solutions to the
dynamics (15):
Theorem 1. The set Ψ in (14) is invariant with respect to the
dynamics (15). The solutions to the dynamics (15) converge to
a critical point of the objective functional µ2 in (13). A critical
point of µ2 is locally asymptotically stable with respect to the
dynamics (15) only if it is a strict local minimum. •

6. NUMERICAL RESULTS

In this section, we present some numerical simulation results
that can illustrate the concepts and algorithms of the previous
sections.

First, we consider a disk-shaped domain Ω of unit radius, and
the placement of a hole B of radius of 0.1 units. Figure 1 shows
a plot of µ2 for the residual domain Ω \B as a function of h
(distance between the center of the disk and the center of the
hole). Since the hole is of radius 0.1 units and is contained
in Ω, we note that h ∈ [0,0.9). Figure 2 shows a contour

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

h (hole position)

3.26

3.28

3.3

2

Fig. 1. µ2 as a function of h for a disk-shaped domain.

plot of µ2 as a function of hole position. We observe from

Figures 1 and 2 that the second (also the smallest positive)
eigenvalue of the Laplace operator for a disk-shaped domain
with a hole increases with the distance between the centers of
the domain and the hole, but also appears to decrease as the
hole approaches close to the domain boundary (around h= 0.85
units). Moreover, µ2 as a function of h appears to be a convex
in the interval h ∈ [0,0.85] and concave for h ∈ (0.85,0.9). We

Fig. 2. Contour plot of µ2 as a function of hole position.

now consider a ring-shaped domain or annulus with 0.4 unit
inner radius and unit outer radius, with the hole radius being
0.1 units. Figure 3 is a plot of µ2 for the residual domain as
a function of h (distance between the center of the ring and
the center of the hole). Note that in this case h ∈ (0.5,0.9),
since the inner radius of the ring is 0.4 units. Figure 4 is a

0.5 0.6 0.7 0.8 0.9

h (hole position)

1.95

2

2.05

2

Fig. 3. µ2 as a function of h for a ring-shaped domain of inner
radius 0.4 and unit outer radius.

contour plot of µ2 as a function of hole position. We observe
from Figures 3 and 4 that the second eigenvalue of the Laplace
operator for a ring-shaped domain or annulus with an hole
increases with the distance between the centers of the domain
and the hole, but also appears to decrease as the hole approaches
close to the outer boundary of the annulus. Moreover, µ2
as a function of h appears to be concave. We now present
simulation results for the projected gradient dynamics (15).
For the simulation, we have separated the dynamics into two
time scales, with x (the center of the hole) as the slow-scale
variable and ψ the fast-scale variable. We consider the case of
the disk-shaped domain, that is, the dynamics (15) corresponds
to hole placement for the disk-shaped domain to minimize µ2
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Fig. 4. Contour plot of µ2 as a function of hole position

of the residual domain. Figure 5 is a plot of x(t), the path of
the center of the hole, on the spatial domain, for two different
initial conditions x(0)= (0.4,0.5) and x(0)= (−0.5,−0.5). We
observe that the hole center approaches the center of the disk
with time, approximately along a straight line.
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Fig. 5. Path of the center of the hole, x(t) from two different ini-
tial conditions x(0) = (0.4,0.5) and x(0) = (−0.5,−0.5)

7. CONCLUSIONS

In this paper, we studied the problem of identifying the critical
nodes for consensus in large-scale spatial networks. We began
by making a functional approximation of the Laplacian matrix
of the graph to the Laplace operator on the domain. In addition
to being a natural step in the large-N limit, the real advantage
of the approximation is that it does not conceal the geometry
of the problem, which is important for spatial networks such as
swarms and sensor networks. As a starting point, we looked
at the removal of balls of given measure from the domain.
The generalization of this setting to arbitrary sets, with a non-
uniform distribution of nodes in the domain, is subject of future
work. We note that the proposed gradient dynamics were cen-
tralized in nature, the problem of designing distributed dynam-
ics for critical node set identification is also of interest and left
for future work. Finally, the dependence of the eigenvalue on
the hole position needs further analytical exploration for more
physical insight into the problem.
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