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Multi-Agent Swarms

@ Swarms are large collectives of dynamic agents

@ Agents interact with one another via sensing and/or communication

Robotic swarms
@ Large-scale, distributed nature potentially offers robustness

@ Propelled by the development of low-cost sensing, communication and
computational systems
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Figure: The Kilobot; A Kilobot swarm; Robots constructing a structure

@ Applications include monitoring, manipulation and construction



Self-organization in Swarms

Emergence of long-range order from local interactions in large-scale
multi-agent systems

Self-organization in nature

Figure: Fish school; Fractal patterns in Broccoli; Bacterial colony

Self-organization in engineered systems
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Figure: Kilobots; Micromotors



Modeling Swarms

Properties of swarms

@ Individual agents are insignificant, only macroscopic objectives matter
@ Performance unaffected by the removal of a small number of agents

@ Specifying the states of individual agents is impractical and ineffective

Macroscopic quantities (spatial density profile, etc) are more
appropriate to specify swarm configuration

Agents interact (sense/communicate) with nearest spatial neighbors



Modeling Swarms

Continuum abstraction of swarms
@ Viewing a swarm as a discretization of a continuous space (manifold)

@ Every point in the manifold is a computational device (agent)

o Objectives specified in the continuum domain

@ Algorithms and control laws designed for the continuum



Selected References

Continuum abstractions of multi-agent/computing systems not new:
e Spatial computing

o “Space-time programming,” Jacob Beal

e Agent coordination for curve / surface formation

e “Multi-agent deployment in 3D via PDE control,” Qi, Vazquez, Krstic,
2015

o ‘“Leader-enabled deployment onto planar curves,” Frihauf, Krstic, 2011

(require pre-assignment of indices to agents)



Modeling Swarms - Continuum Abstraction

Number of agents N very large (N — o0)

Agents embedded in a bounded open set Q C RY with spatial density
distribution p

Density distribution normalized ([, p = 1)

Conservation of agents: % + V- (pv) =0, v is the velocity field

The above is also the continuity equation from fluid dynamics
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Problem Formulation

Achieve a macroscopic spatial density profile p* : M* — R<( over a
target spatial domain M*

p* :
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Assumptions
@ Agents have computation and communication capabilities

@ Agents can measure local density, but do not have position
information (key aspect of this work)

Agents do not have pre-assigned indices

Agents know the true x and y directions

Boundary agents can determine outward unit normal to the boundary



Problem formulation

Conservation law

XV (v =0 (1)

v(t, r) is the velocity of agent at r at time ¢
The objective is to design v(t,r) to achieve p — p*

However, the agents do not know their position r, which implies that
@ The agents cannot access the value of the desired local density p*(r)

@ A velocity input v(t, r), with argument r, cannot be implemented



Outline of Approach

1. Construct a coordinate transformation (Diffeomorphism) r — R*
Y
y
/7N
. / X

Map spatial position r to an artificial coordinate R*(r)

2. Design a distributed algorithm for the agents to compute R*(r)

3. Determine desired density profile (offline) in transformed coordinates
Density profile p* in the new coordinates, such that p* = p* o R*!

4. Design a distributed control law to achieve p — p* o R* = p* under
the dynamics in Equation (1)



Self-organization in 1D - Coordinate Transformation

1. What coordinate transformation?

For every p : [0, L] — R, there is a natural coordinate transformation ©
given by:

ot - [ " p(x)x

the cumulative distribution function (with ©(L) = 1)

1~

X X
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Self-organization in 1D - Coordinate Computation

2. Distributed algorithm to compute the coordinate transformation

We use the diffusion PDE to converge to ©

9.X = lﬁx (@X)
p

X(t,0) = aft)
X(t, L) = B(t)
Ora(t) = —a(t)
9:B(t) =1 - B(t)
X(0,x) = Xo(x)

The above PDE system converges asymptotically to ©




Self-organization in 1D - Coordinate Computation

Discretizing the PDE system over a line graph yields the averaging
consensus dynamics

i+1
Xi(t+1) Z [Xi(t (1)]
_] i—1
X/(f) =0
Xr(t) = ﬁ(t)
Xi(0) = Xo;

/

where the index '/’ is for the leftmost agent and 'r’ the rightmost

This is the distributed algorithm implemented synchronously by the agents
to compute the coordinate transformation



Self-organization in 1D - Distributed Control

3. Determine density profile p* such that p* = p* o o1
where ©* is the CDF corresponding to p*
4. Distributed control law to achieve p — p* o X

The dynamics of the swarm + distributed computation of coordinate

transform
Oep = —0x(pv)
0x =20, (aXpX ) CVaX
X(t,0)=0 (2)
X(t, L(t)) = B(t)



Self-organization in 1D - Distributed Control

The System (2) with the control law
v(t,0) =0
3xp* <8XX>
Oxv=(p—p oX)— Ox
v ) p(p+ p* o X) p
X(t,0) =0
Xx
Be=2-pB(t) - —
P i)
is asymptotically stable at p = p* and X = ©*




Self-organization in 1D - Discrete Control Law

The control law above is discretized to obtain

o 2K p*(Xiy1) — p*(Xi1)> - oy
e pi(pi + p*(Xi)) ( Xiv1 — Xi—1 : j:iz—l 0= %)
V| = 0
O = w =1-75(t) — 2k (X, — X,—1)



Simulation
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Figure: Density p(x) plotted against position x at different instants of time



Self-organization in 2D

Difficulty in the 2D case
@ Shape control through boundary + density control in the interior

Coordinate transformation
@ The harmonic map is used to contruct a diffeomorphism

@ Agents map themselves harmonically onto a unit disk
Y
y
L /\\ |_
X ! x

@ Boundary agents first implement the 1D algorithm and map
themselves onto a unit circle

@ Interior agents implement a heat flow based algorithm to compute
the diffeomorphism



Harmonic Maps

A map R=(X,Y): M CR?— R?is called harmonic if it minimizes the
functional:

E(R) = /M (VX2 + [VYP)dp,

The Euler-Lagrange equation for the functional E which also yields the
minimum is given by AX =0 and AY = 0 (Laplace equations)

Let M be a compact surface with boundary and N C R? another compact
surface. Suppose that 1 : M — N is a diffeomorphism onto ¥)(M) such
that (M) is convex. Then there is a unique harmonic map R : M — N
with R =1 on OM, such that R : M — R(M) is a diffeomorphism.




Heat Flow

Let R=(X,Y): M — N be a harmonic map

AX =
0 forreint M
AY =0

R=v ondM

Lemma

Solutions to the heat flow equation

X = £X forr € int M
oY =AY
R=vY ondM

converge asymptotically to the harmonic map above




Self-organization in 2D - Coordinate Computation

o Boundary agents implement the 1D algorithm
This yields a parametrization of the boundary I : OM — [0,1)

@ Each agent on the boundary is identified by a unique v € [0, 1)

@ They then map themselves onto a unit circle through the map
R(v) = (X, Y)(v) = (1 — cos(2m), sin(27y)) which is a

diffeomorphism
/TN

@ The interior agents now implement heat flow to converge to the
harmonic diffeomorphism (coordinate transformation)



Self-organization in 2D - Coordinate Computation

The distributed algorithm for the computation of coordinates is obtained by
discretizing the heat flow equation

X+ 1) =X +x 3 SO0 = %(0)
JENI(t 9

it +1) = Yi(t) + s Z TEACR0)
JEN(t

where d; = [N is the number of neighbors of agent j



Self-organization in 2D - Distributed Control

Approach We divide the 2D self-organization process into three stages

o Stage 1: Agents converge to the target spatial domain M*, with
boundary agents controlling the shape of the domain

@ Stage 2: Agents implement the distributed algorithm to compute the
coordinate transformation

e Stage 3: Boundary agents remain stationary, agents in the interior
converge to the desired density distribution



Self-organization in 2D - Distributed Control

The swarm dynamics are given by:

dep=—V - (pv), forre M(t),
Or =v, on OM(t).

Stage 1

Boundary agents first localize themselves

()7 = [ 20

with tangent to boundary s and normalized density of boundary agents g

Boundary agents know the desired boundary curve (x*(v), y*(v))



Self-organization in 2D - Distributed Control Stage 1

The swarm with the control law

e Ad for r € M(t)
tP = —1|V¢P —e-n-V¢-n on OM(t)

Vo, for r € M(t)
TV -mn—(e-s)s  ondM(t)

converges asymptotically to the target spatial domain M*

@ Heat flow based distributed control law



Self-organization in 2D - Distributed Control Stage 3

@ Swarm converged to target spatial domain at the end of Stage 1

@ In Stage 2, agents implement distributed coordinate computation
algorithm described earlier

@ In Stage 3 the interior agents converge to the desired density profile

Theorem

The swarm with the control law

%:7pV(pfp*oR*)+(v'V)va forr € M*
v=_0 on OM*

converges asymptotically to the desired density profile p*




Simulation
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Figure: Evolution of density distribution



Conclusions

o Continuum abstraction of swarms was made owing to the macroscopic
nature of objectives

@ Objective was to design distributed control laws for spatial
self-organization of swarms in 1D and 2D without position
measurements

e Coordinate transformations constructed (the CDF in 1D and
harmonic diffeomorphism in 2D) for position-free control laws

@ Distributed algorithms for computation of coordinate transformations
were designed

@ Distributed control laws for self-organization designed with
transformed coordinates



Conclusions

Thank you! Questions?



