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Multi-Agent Swarms

Swarms are large collectives of dynamic agents

Agents interact with one another via sensing and/or communication

Robotic swarms

Large-scale, distributed nature potentially offers robustness

Propelled by the development of low-cost sensing, communication and
computational systems

Figure: The Kilobot; A Kilobot swarm; Robots constructing a structure

Applications include monitoring, manipulation and construction



Self-organization in Swarms

Emergence of long-range order from local interactions in large-scale
multi-agent systems

Self-organization in nature

Figure: Fish school; Fractal patterns in Broccoli; Bacterial colony

Self-organization in engineered systems

Figure: Kilobots; Micromotors



Modeling Swarms

Properties of swarms

Individual agents are insignificant, only macroscopic objectives matter

Performance unaffected by the removal of a small number of agents

Specifying the states of individual agents is impractical and ineffective

Macroscopic quantities (spatial density profile, etc) are more
appropriate to specify swarm configuration

Agents interact (sense/communicate) with nearest spatial neighbors



Modeling Swarms

Continuum abstraction of swarms

Viewing a swarm as a discretization of a continuous space (manifold)

Every point in the manifold is a computational device (agent)

Manifold

Robot

Objectives specified in the continuum domain

Algorithms and control laws designed for the continuum



Selected References

Continuum abstractions of multi-agent/computing systems not new:

Spatial computing

“Space-time programming,” Jacob Beal

Agent coordination for curve / surface formation

“Multi-agent deployment in 3D via PDE control,” Qi, Vazquez, Krstic,
2015

“Leader-enabled deployment onto planar curves,” Frihauf, Krstic, 2011

(require pre-assignment of indices to agents)



Modeling Swarms - Continuum Abstraction

Manifold

Robot

Number of agents N very large (N →∞)

Agents embedded in a bounded open set Ω ⊂ Rd with spatial density
distribution ρ

Density distribution normalized (
∫

Ω
ρ = 1)

Conservation of agents: ∂ρ
∂t +∇ · (ρv) = 0, v is the velocity field

The above is also the continuity equation from fluid dynamics



Outline of the Talk

I. Problem formulation

II. Outline of approach

III. Self-organization in one dimension

IV. Self-organization in two dimensions

V. Conclusions and Future work



Problem Formulation

Achieve a macroscopic spatial density profile ρ∗ : M∗ → R>0 over a
target spatial domain M∗

Assumptions

Agents have computation and communication capabilities

Agents can measure local density, but do not have position
information (key aspect of this work)

Agents do not have pre-assigned indices

Agents know the true x and y directions

Boundary agents can determine outward unit normal to the boundary



Problem formulation

Conservation law

∂ρ

∂t
+∇ · (ρv) = 0 (1)

v(t, r) is the velocity of agent at r at time t

The objective is to design v(t, r) to achieve ρ→ ρ∗

However, the agents do not know their position r , which implies that

The agents cannot access the value of the desired local density ρ∗(r)

A velocity input v(t, r), with argument r , cannot be implemented



Outline of Approach

1. Construct a coordinate transformation (Diffeomorphism) r 7→ R∗

Map spatial position r to an artificial coordinate R∗(r)

2. Design a distributed algorithm for the agents to compute R∗(r)

3. Determine desired density profile (offline) in transformed coordinates

Density profile p∗ in the new coordinates, such that p∗ = ρ∗ ◦ R∗−1

4. Design a distributed control law to achieve ρ→ p∗ ◦ R∗ = ρ∗ under
the dynamics in Equation (1)



Self-organization in 1D - Coordinate Transformation

1. What coordinate transformation?

For every ρ : [0, L]→ R>0, there is a natural coordinate transformation Θ
given by:

Θ(x) =

∫ x

0

ρ(x)dx

the cumulative distribution function (with Θ(L) = 1)



Self-organization in 1D - Coordinate Computation

2. Distributed algorithm to compute the coordinate transformation

We use the diffusion PDE to converge to Θ

∂tX =
1

ρ
∂x

(
∂xX

ρ

)
X (t, 0) = α(t)

X (t, L) = β(t)

∂tα(t) = −α(t)

∂tβ(t) = 1− β(t)

X (0, x) = X0(x)

Lemma

The above PDE system converges asymptotically to Θ



Self-organization in 1D - Coordinate Computation

Discretizing the PDE system over a line graph yields the averaging
consensus dynamics

Xi (t + 1) = Xi (t) +
1

3

i+1∑
j=i−1

[Xj(t)− Xi (t)]

Xl(t) = 0

Xr (t) = β(t)

Xi (0) = X0i

where the index ′l ′ is for the leftmost agent and ′r ′ the rightmost

This is the distributed algorithm implemented synchronously by the agents
to compute the coordinate transformation



Self-organization in 1D - Distributed Control

3. Determine density profile p∗ such that p∗ = ρ∗ ◦Θ∗−1

where Θ∗ is the CDF corresponding to ρ∗

4. Distributed control law to achieve ρ→ p∗ ◦ X

The dynamics of the swarm + distributed computation of coordinate
transform

∂tρ = −∂x(ρv)

∂tX =
1

ρ
∂x

(
∂xX

ρ

)
− v∂xX

X (t, 0) = 0

X (t, L(t)) = β(t)

X (0, x) = X0(x)

(2)



Self-organization in 1D - Distributed Control

Theorem

The System (2) with the control law

v(t, 0) = 0

∂xv = (ρ− p∗ ◦ X )− ∂Xp
∗

ρ(ρ+ p∗ ◦ X )
∂x

(
∂xX

ρ

)
X (t, 0) = 0

βt = 2− β(t)− Xx

ρ

∣∣∣∣
L(t)

is asymptotically stable at ρ = ρ∗ and X = Θ∗



Self-organization in 1D - Discrete Control Law

The control law above is discretized to obtain

vi = vi−1 −
2κ

ρi (ρi + p∗(Xi ))

(
p∗(Xi+1)− p∗(Xi−1)

Xi+1 − Xi−1

)
×

i+1∑
j=i−1

(Xj − Xi )

vl = 0

∂tβ =
β(t + 1)− β(t)

∆t
= 1− β(t)− 2κ (Xr − Xr−1)



Simulation

Figure: Density ρ(x) plotted against position x at different instants of time



Self-organization in 2D

Difficulty in the 2D case

Shape control through boundary + density control in the interior

Coordinate transformation

The harmonic map is used to contruct a diffeomorphism

Agents map themselves harmonically onto a unit disk

Boundary agents first implement the 1D algorithm and map
themselves onto a unit circle

Interior agents implement a heat flow based algorithm to compute
the diffeomorphism



Harmonic Maps

A map R = (X ,Y ) : M ⊂ R2 → R2 is called harmonic if it minimizes the
functional:

E (R) =

∫
M

(|∇X |2 + |∇Y |2)dµ,

The Euler-Lagrange equation for the functional E which also yields the
minimum is given by ∆X = 0 and ∆Y = 0 (Laplace equations)

Lemma

Let M be a compact surface with boundary and N ⊂ R2 another compact
surface. Suppose that ψ : M → N is a diffeomorphism onto ψ(M) such
that ψ(M) is convex. Then there is a unique harmonic map R : M → N
with R = ψ on ∂M, such that R : M → R(M) is a diffeomorphism.



Heat Flow

Let R = (X ,Y ) : M → N be a harmonic map{
∆X = 0

∆Y = 0
for r ∈ int M

R = ψ on ∂M

Lemma

Solutions to the heat flow equation{
∂tX = ∆X

∂tY = ∆Y
for r ∈ int M

R = ψ on ∂M

converge asymptotically to the harmonic map above



Self-organization in 2D - Coordinate Computation

Boundary agents implement the 1D algorithm
This yields a parametrization of the boundary Γ : ∂M → [0, 1)

Each agent on the boundary is identified by a unique γ ∈ [0, 1)

They then map themselves onto a unit circle through the map
R(γ) = (X ,Y )(γ) = (1− cos(2πγ), sin(2πγ)) which is a
diffeomorphism

The interior agents now implement heat flow to converge to the
harmonic diffeomorphism (coordinate transformation)



Self-organization in 2D - Coordinate Computation

The distributed algorithm for the computation of coordinates is obtained by
discretizing the heat flow equation

Xi (t + 1) = Xi (t) + κ
∑

j∈Ni (t)

1

dj(t)
(Xj(t)− Xi (t))

Yi (t + 1) = Yi (t) + κ
∑

j∈Ni (t)

1

dj(t)
(Yj(t)− Yi (t))

where dj = |Nj | is the number of neighbors of agent j



Self-organization in 2D - Distributed Control

Approach We divide the 2D self-organization process into three stages

Stage 1: Agents converge to the target spatial domain M∗, with
boundary agents controlling the shape of the domain

Stage 2: Agents implement the distributed algorithm to compute the
coordinate transformation

Stage 3: Boundary agents remain stationary, agents in the interior
converge to the desired density distribution



Self-organization in 2D - Distributed Control

The swarm dynamics are given by:

∂tρ = −∇ · (ρv), for r ∈ M̊(t),

∂tr = v, on ∂M(t).

Stage 1

Boundary agents first localize themselves

(x(γ), y(γ))T =

∫ γ

0

s(τ) dτ

q(τ)

with tangent to boundary s and normalized density of boundary agents q

Boundary agents know the desired boundary curve (x∗(γ), y∗(γ))



Self-organization in 2D - Distributed Control Stage 1

Theorem

The swarm with the control law

∂tφ =

{
∆φ for r ∈ M̊(t)

− 1
2 |∇φ|

2 − e · n−∇φ · n on ∂M(t)

v =

{
∇φ, for r ∈ M̊(t)

(∇φ · n)n− (e · s)s on ∂M(t)

converges asymptotically to the target spatial domain M∗

Heat flow based distributed control law



Self-organization in 2D - Distributed Control Stage 3

Swarm converged to target spatial domain at the end of Stage 1

In Stage 2, agents implement distributed coordinate computation
algorithm described earlier

In Stage 3 the interior agents converge to the desired density profile

Theorem

The swarm with the control law{
dv
dt = −ρ∇(ρ− p∗ ◦ R∗) + (v · ∇)v − v for r ∈ M̊∗

v = 0 on ∂M∗

converges asymptotically to the desired density profile ρ∗



Simulation

Figure: Evolution of density distribution



Conclusions

Continuum abstraction of swarms was made owing to the macroscopic
nature of objectives

Objective was to design distributed control laws for spatial
self-organization of swarms in 1D and 2D without position
measurements

Coordinate transformations constructed (the CDF in 1D and
harmonic diffeomorphism in 2D) for position-free control laws

Distributed algorithms for computation of coordinate transformations
were designed

Distributed control laws for self-organization designed with
transformed coordinates



Conclusions

Thank you! Questions?


